Курсовая работа: Количественный анализ силибина в экстрактах, полученных с использованием субкритической воды

1. Алкалоиды.

2. Терпеноиды – монотерпены, сесквитерпены, дитерпены, тритерпены, стеролы, каротеноиды.

3. Производные фенола – фенолы, фенольные кислоты, дубильные вещества, флавоноиды, кумарины, антрахиноны,

4. Углеводы – моносахариды, олигосахариды, полисахариды, сахарные спирты.

5. Глицериды – растительные масла, витамин F, эссенциальные жирные кислоты.

Наряду с представителями, которые недвусмысленно принадлежат к одной из указанных выше химических групп, известно и много растительных веществ, имеющих признаки, характерные для нескольких химических групп; в таком случае одного из них выбирают как основного [1].

1.2 Приготовление лекарственных форм из растительного сырья

Основным процессом, применяемым при приготовлении лекарственных форм из растительного сырья, является экстрагирование. Практически каждый технологический режим, связанный с их производством и, независимо от условий, при которых он протекает, включает экстракцию активно действующих веществ из соответствующего растительного сырья.

Ввиду этого в последние годы теория и практика этого процесса особенно интенсивно разрабатываются в химико-фармацевтической промышленности с учетом некоторых специфических особенностей. Последние связаны прежде всего с предварительными технологическими операциями (сушка, измельчение и др.) и со стабильностью лекарственных веществ, которые в известном смысле, осложняют нормальную регуляцию и оптимизацию этих процессов. В определенной степени предварительная обработка изменяет некоторые свойства растительного сырья, включительно и его химический состав, ввиду создания условий для процессов гидролиза и ферментации, которые чаще всего приводят к уменьшению первоначального биологического эффекта (деструктивные и другие изменения в лекарственном веществе) [4, 7].

Несмотря на это, такая форма обработки растительного сырья безусловно более рациональная, так как благодаря качественно новому их состоянию ускоряются процессы резорбции, исключается возможность лишней нагрузки организма ненужными веществами (растительными клетками) и создаются более хорошие условия для стабилизации и стандартизации вытяжки [1, 4, 8].

Применяемые в современной практике методы экстракции лекарственных веществ из растительного сырья разделяют на две принципиально различные группы

1. Методы экстракции, проводимые при обыкновенной температуре.

2. Методы экстракции, проводимые при повышенной температуре.

По одному из указанных методов получают основные группы галеновых препаратов – экстракты, спиртовые настои, высокоочищенные экстрагированные фитопрепараты (неогаленовые), полифракционные экстракты, водяные вытяжки (инфузы и декокты) и др. Эти методы основаны на некоторых закономерностях, связанных с массообменными процессами, свойствами растительных тканей, физико-химическими свойствами растворителя и веществ, подлежащих экстрагированию.

Под «массообменным процессом» необходимо в самом общем смысле понимать перенос веществ путем диффузии в направлении достижения равновесия в системе (выравнивание концентраций). В частности, при получении производных при экстракции, существенное значение имеет массообмен в системах твердое (сырье) – жидкое (растворитель), жидкое – жидкое (при очистке нативных вытяжек), жидкость – газ (испарение, сушка, конденсация) и др. [8]

Процесс массообмена можно рассматривать в трех аспектах в зависимости от условий его выполнения:

Условия, созданные наличием отдельных фаз и распределением компонентов в них. В сущности, они отражают статические закономерности процесса. В самых общих линиях это распределение и закономерности, которым оно подчиняется, можно выразить, используя распределительный коэффициент между обеими фазами: растворенное вещество в экстрагенте, поглощенном растительным сырьем, и раствор вещества в экстрагенте, обливающем частицы растительного сырья. Следовательно, в данном случае на распределение вещества при равновесном состоянии в основных линиях будут оказывать влияние только обменные соотношения обеих фаз.

Созданные условия для массообмена на граничащей фазовой поверхности, которыми определяются начальная и конечная концентрации [9].

Условия, определяющие скорость процесса, которые выражены коэффициентом массообмена. Знание этих процессов и влияющих на них факторов имеет принципиально важное значение для их оптимизации.

В таком случае основным двигателем является так называемый концентрационный градиент: чем он больше, тем активнее протекают процессы массообмена.

Для приготовления лекарственных форм из растительного сырья применяются следующие способы [10]:

1. Мацерация.

Ее осуществляют в условиях комнатной температуры, предварительно заливая измельченное растительное сырье необходимым количеством экстрактора. Процесс длится различное время (от 15–30 минут до нескольких дней), при этом ежечасно необходимо размешивать систему. Во время мацерации начальная скорость экстракции высокая, затем постепенно уменьшается, пока не наступит равновесие в концентрации растворяющегося вещества внутри в тканях сырья и в экстрагирующем агенте. Выделение раствора из лекарственного сырья (например, путем прессования) не обеспечивает полной экстракции содержащегося в ней компонента. Этот метод простой и не требует специальной аппаратуры.

Скорость процесса можно усилить, проводя дву- или многократную мацерацию, то есть сырье заливают частью растворителя. Вытяжку отделяют путем прессования, а остаток заливают второй частью растворителя. Таким образом обеспечивается двукратно максимальная разница в концентрации активно действующего вещества между сырьем и экстрагирующим фактором. Классическая мацерация осуществляется одним растворителем, чаще всего – смесью этанола и воды. Поэтапная мацерация основывается на смене растворителя, чем облегчается вытяжка различных веществ из сырья в зависимости от их растворимости в воде или этаноле. Сначала сырье заливают всем количеством воды и мацерация длится I–3 дня. Затем добавляют 1/2 этанола и мацерация продолжается до 5 дней, после чего добавляют оставшийся этанол и мацерируют еще 5 дней.

2. Вихревая экстракция

Она введена Melichar (1953) и позднее включена в немецкую фармакопею (DAB–7). Она основана на сокращении времени экстракции путем применения очень интенсивного размешивания. Для этой цели используют миксеры или быстрооборотные мешалки, которые одновременно и измельчают сырье. В результате высокой скорости температура спустя 10 минут повышается, достигая около 40–-45°С. что создает трудности при использовании быстролетучих экстракторов

3. Перколяция (фильтрация через жидкий реагент)

Она позволяет ускорить экстракцию и полное извлечение содержимого сырья. Согласно уравнению Фика. скорость процесса экстракции, то есть количество вещества, которое диффундирует за единицу времени в растворитель, прямопропорционально разницам в концентрации диффундирующего в сырье вещества и растворителем и обратнопропорционально расстоянию между этими двумя фазами. Такого ускорения процесса экстракции можно достичь, создавая условия, чтобы чистый растворитель был в возможно самом близком контакте с каждой частицей сырья и вытеснять находящийся уже там раствор. Это можно осуществить, помещая сырье в колонку, через которую пропускают растворитель.

Перколяция осуществляется в 4 этапа:

Мацерация сырья в целях его набухания.

К-во Просмотров: 210
Бесплатно скачать Курсовая работа: Количественный анализ силибина в экстрактах, полученных с использованием субкритической воды