Курсовая работа: Компьютерная томография

Указанного недостатка лишена аксиальная компьютерная рентгеновская томография. Это объясняется тем, что строго коллимированный пучок рентгеновского излучения проходит только через ту плоскость, которая интересует врача. При этом регистрация рассеянного излучения сведена к минимуму, что значительно улучшает визуализацию тканей, особенно мало контрастных. Снижение регистрации рассеянного излучения при компьютерной томографии осуществляется коллиматорами, один из которых расположен на выходе рентгеновского пучка из трубки, другой - перед сборкой детекторов.

Известно, что при одинаковой энергии рентгеновского излучения материал с большей относительной молекулярной массой будет поглощать рентгеновское излучение в большей степени, чем вещество с меньшей относительной молекулярной массой. Подобное ослабление рентгеновского пучка может быть легко зафиксировано. Однако на практике мы имеем дело с совершенно неоднородным объектом - телом человека. Поэтому часто случается, что детекторы фиксируют несколько рентгеновских пучков одинаковой интенсивности в то время, как они прошли через совершенно различные среды. Это наблюдается, например, при прохождении через однородный объект достаточной протяженности и неоднородный объект с такой же суммарной плотностью.

При продольной томографии разницу между плотностью отдельных участков определить невозможно, поскольку «тени» участков накладываются друг на друга. С помощью компьютерной томографии решена и эта задача, так как при вращении рентгеновской трубки вокруг тела пациента детекторы регистрируют 1,5 - 6 миллионов сигналов из различных точек (проекций) и, что особенно важно, каждая точка многократно проецируется на различные окружающие точки.

При регистрации ослабленного рентгеновского излучения на каждом детекторе возбуждается ток, соответствующий величине излучения, попадающего на детектор. В системе сбора данных ток от каждого детектора (500-2400 шт.) преобразуется в цифровой сигнал и после усиления подается в ЭВМ для обработки и хранения. Только после этого начинается собственно процесс восстановления изображения.

Восстановление изображения среза по сумме собранных проекций является чрезвычайно сложным процессом, и конечный результат представляет собой некую матрицу с относительными числами, соответствующую уровню поглощения каждой точки в отдельности.

В компьютерных томографах применяются матрицы первичного изображения 256х256, 320х320, 512х512 и 1024х1024 элементов. Качество изображения растет при увеличении числа детекторов, увеличении количества регистрируемых проекций за один оборот трубки и при увеличении первичной матрицы. Увеличение количества регистрируемых проекций ведет к повышению лучевой нагрузки, применение большей первичной матрицы - к увеличению времени обработки среза или необходимости устанавливать дополнительные специальные процессоры видеоизображения.

4.2 Получение компьютерной томограммы

Получение компьютерной томограммы (среза) головы на выбранном уровне основывается на выполнении следующих операций:

· формирование требуемой ширины рентгеновского луча (коллимирование);

· сканирование головы пучком рентгеновского излучения, осуществляемого движением (вращательным и поступательным) вокруг неподвижной головы пациента устройства «излучатель – детекторы»;

· измерение излучения и определение его ослабления с последующим преобразованием результатов в цифровую форму;

· машинный (компьютерный) синтез томограммы по совокупности данных измерения, относящихся к выбранному слою;

· построение изображения исследуемого слоя на экране видеомонитора (дисплея).

В системах компьютерных томографов сканирование и получение изображения происходят следующим образом: рентгеновская трубка в режиме излучения «обходит» голову по дуге 2400 , останавливаясь через каждые 30 этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы – кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое. Последнее попадает на фотоэлектронные умножители, превращающие эту видимую часть в электрические сигналы. Электрические сигналы подвергаются усилению, а затем преобразованию в цифры, которые вводят в ЭВМ. Рентгеновский луч, пройдя через среду поглощения, ослабляется пропорционально плотности тканей, встречающихся на его пути, и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала, поступающего с контрольного детектора, регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

Следовательно, формирование показателей поглощения (ослабления) для каждой точки исследуемого слоя происходит после вычисления отношения величины сигнала на выходе рентгеновского излучателя к значению его после прохождения объекта исследования (коэффициенты поглощения).

В ЭВМ выполняется математическая реконструкция коэффициентов поглощения и пространственное их распределение на квадратной многоклеточной матрице, а полученные изображения передаются для визуальной оценки на экран дисплея.

За одно сканирование получают два соприкасающихся между собой среза толщиной 10 мм каждый. Картина среза восстанавливается на матрице.

Полученные коэффициенты поглощения выражают в относительных единицах шкалы, нижняя граница которой (-1000 ед.Н.) (ед.Н. - единицы Хаунсфильда или числа компьютерной томографии) соответствует ослаблению рентгеновских лучей в воздухе, верхняя (+1000 ед.Н.) - ослаблению в костях, а за ноль принимается коэффициент поглощения воды. Различные ткани мозга и жидкие среды имеют разные по величине коэффициенты поглощения. Например, коэффициент поглощения жира находится в пределах от -100 до 0 ед.Н., спинномозговой жидкости - от 2 до 16 ед.Н., крови - от 28 до 62 ед.Н. Это обеспечивает возможность получать на компьютерных томограммах основные структуры мозга и многие патологические процессы в них. Чувствительность системы в улавливании перепада рентгеновской плотности в обычном режиме исследования не превышает 5 ед.Н., что составляет 0,5%.

На экране дисплея высоким значениям плотности (например, кости) соответствует светлые участки, низким - темные. Градационная способность экрана составляет 15-16 полутоновых ступеней, различаемых человеческим глазом. На каждую ступень, таким образом, приходится около 130 ед.Н.

Известно, что качество визуализации анатомических образований головного мозга и очагов поражения зависит в основном от двух факторов: размера матрицы, на которой строится томограмма, и перепада показателей поглощения. Величина матрицы может оказывать существенное влияние на точность диагностики. Так, количество ошибочных диагнозов при анализе томограмм на матрице 80х80 клеток составляло 27%, а при работе на матрице 160х160 - уменьшилось до 11%.

Компьютерный томограф обладает двумя видами разрешающей способности: пространственной и по перепаду плотности. Первый тип определяется размером клетки матрицы (обычно - 1,5 х 1,5 мм), второй равен 5 ед.Н. (0,5%). В соответствии с этими характеристиками теоретически можно различать элементы изображения размером 1,5 х 1,5 мм при перепаде плотности между ними не меньше 5 ед.Н. (1%) удается выявлять очаги величиной не менее 6х6 мм, а при разнице в 30 ед.Н. (3%) - детали размером 3х3 мм. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20%.

Однако, при очень значительном перепаде плотностей рядом расположенных структур, возникают специфические для данного метода условия, снижающие его разрешающую способность, так как при построении изображения в этих случаях происходит математическое усреднение и при этом очаги небольших размеров могут быть не обнаружены. Чаще это происходит при небольших зонах пониженной плотности, расположенных вблизи массивных костных структур (пирамиды височных костей) или костей свода черепа.

Важным условием для обеспечения проведения компьютерной томографии является неподвижное положение пациента, ибо движение во время исследования приводят к возникновению артефактов - наводок: полос темного цвета от образований с низким коэффициентом поглощения (воздух) и белых полос от структур с высоким КП (кость, металлические хирургические клипсы), что также снижает диагностические возможности.

Для получения более четкого изображения патологически измененных участков в головном мозге и для исследования полых органов дающих на экране сравнительно густую однородную тень (желудок, кишечник, желчный пузырь, почечные лоханки и др.), производится их контрастирование. Так, при общем исследовании пищеварительного тракта больному дают выпить контрастную массу - взвесь сульфата бария; при исследовании толстой кишки вводят эту взвесь больному с помощью клизмы. Исследование желчного пузыря и внутрипеченочных желчных протоков (холецuсmографuя, холеграфuя) проводят с помощью йодсодержащих контрастных веществ, даваемых внyтpь (билитраст, кислота иопаноевая) или вводимых в вену (билигност). Эти вещества током крови приносятся в печень и выделяются с желчью, концентрируясь в желчном пузыре. Рентгенологическое исследование лоханок почек (пuелография) проводится с помощью сергозина, также вводимого внyтpивенно. Рентгенологическое исследование бронхов (бронхография) возможно после заполнения долевых и сегментарных бронхов пораженного участка легких особым контрастным веществом (йодолиполом). Ретгeнологическое исследование сосудов (ангuография) осуществляется с помощью кардиотраста. Содержание контрастного вещества в протекающей крови изменяется в результате того, что относительно быстро начинается выделение его почками. Уже в течение первых 5 мин после болюсной инъекции концентрация вещества в крови в среднем снижается на 20%, в последующие 5 мин - на 13% и еще через 5 мин - на 5%.

В некоторых случаях контрастирование органа производится за счет воздуха, который вводится в окружающую ткань или полость. Так, при рентгенологическом исследовании почек, когда имеется подозрение на поражение их опухолью, воздух вводится в околопочечную клетчатку (пневморен); для обнаружения прорастания опухолью желудка его стенок воздух вводится в брюшную полость, т. е. исследование проводится в условиях искусственного пневмоперитонеума.

Для исследования органов, обладающих сократительной активностью (чаще всего сердца), используется рентгенокимография. При этом способе перед кассетой с рентгеновской пленкой на пути лучей, идущих от рентгеновской трубки через тело больного, устанавливается специальная свинцовая решетка с горизонтальными щелями. В момент снимка решетка смещается на небольшое расстояние перпендикулярно контуру исследуемого органа. А так как сам орган (например, сердце) за это время совершает некоторое движение параллельно щели решетки, то на пленке контур органа получается не ровный, а в виде зубчатой линии. По амплитуде зубцов и их форме можно судить о силе сокращений сердца, оценить их характер.

5. Цифровые рентгенографические системы

5.1 Описание цифровых рентгенологических систем

Преобразование традиционной рентгенограммы в цифровой массив с последующей возможностью обработки рентгенограмм методами вычислительной техники стало распространенным процессом. Такие аналоговые системы зачастую имеют очень жесткие ограничения на экспозицию из-за малого динамического диапазона рентгеновской пленки. В отличие от аналоговых, прямые цифровые рентгенографические системы позволяют получать диагностические изображения без промежуточных носителей при любом необходимом уровне дозы, причем это изображение можно обрабатывать и отображать самыми различными способами.

К-во Просмотров: 1084
Бесплатно скачать Курсовая работа: Компьютерная томография