Курсовая работа: Конвейерная система
1. Введение.
2. Постановка задачи.
3. Описание метода решения.
4. Разработка модели:
· Формализованная схема
· Временная диаграмма
· Блок-схема
5. Перевод модели на язык программирования.
1. Введение.
Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними. Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта на его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента
Для формального представления процессов функционирования систем при имитационном моделировании обычно используются два типа схем, схема с дискретными событиями и непрерывные схемы. При дискретной схеме процесс функционирования системы во времени отождествляется с последовательностью событий, возникающих в системе в соответствии с закономерностями ее функционирования. В формальное понятие «событие» вкладывается конкретное смысловое содержание, определяемое целями моделирования. При непрерывной схеме процесс задается с помощью системы уравнений для совокупности переменных состояния, динамическое поведение которых имитирует реальную систему.
Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами: Первый заключается в «движении» по времени с некоторым постоянным шагом ∆t, второй - в «движении» по времени от события к событию. Считается, что в промежутках времени между событиями в модели изменений не происходит.
Кроме реального и системного времени существует ещё один тип времени - машинное, т.е. время, за которое реализуется имитационный эксперимент. При имитационном моделировании реальных систем, как правило, стремятся «сжать» реальное время, т.е. продолжительность процессов в модели, измеряется машинным временем, значительно меньше продолжительности тех же процессов в реальном объекте. Это дает возможность изучать функционирование реальной системы на достаточно длительных интервалах времени.
Очевидно, аналогичные задачи можно решать и с помощью аналитических методов, однако имитация позволяет работать с моделями большой размерности, учитывать ограничения и условия, которые трудно или невозможно включить в аналитическую модель, а также представлять результаты моделирования в наглядной легко интерпретируемой форме. Однако это не значит, что имитационное моделирование может заменить аналитическое. Проведение имитационного эксперимента часто оказывается трудоемкой и длительной процедурой. Поэтому на практике при решении задач анализа и управления в экономических системах аналитическое и имитационное моделирование объединяют в комплексную процедуру. Аналитическое моделирование в такой процедуре используют для быстрого, но приближенного оценивания основных характеристик систем, что позволяет выявить некоторые закономерности в поведении системы и сформулировать требования к системе управления. Имитационное моделирование занимает больше времени и позволяет определить указанные характеристики и другие с более высокой степенью точности.
Имитационное моделирование реализуются программно с использованием различных языков, как универсальных - БЕЙСИК, РАСКАЛЬ, СИ и т.д., так и специализированных, предназначенных для построения имитационных моделей - СИМСКРИПТ, GPSS, СТАМЛСЛАСС, SLAM, Pilgrim и др.
Цель курсовой работы по дисциплине «Имитационное моделирование экономических процессов» состоит в том, чтобы разработать имитирующую модель конвейерной системы.
2. Постановка задачи.
Два обслуживающих устройства установлено у ленты конвейера и, если они свободны, могут снимать изделия с конвейера. Изделия поступают на первый конвейер с постоянным интервалом, равным 10 единицам времени. Изделию, попавшему на конвейер, требуется 3 единицы времени, чтобы достичь первого обслуживающего устройства. Если первое устройство занято, изделие продолжает двигаться по ленте конвейера и через 3 единицы времени достигает второго обслуживающего устройства. Если оба устройства заняты, то изделие возвращается к устройствам через 9 единиц времени (если оно не будет снято другим устройством). Время обслуживания изделия распределено нормально с математическим ожиданием 5,0 и среднеквадратичным отклонением 1. Когда устройство у первой ленты завершает обработку изделия, оно помещает его на ленту второго конвейера, обслуживаемого другим устройством. Изделия поступают к третьему устройству через 5 единиц времени после попадания на второй конвейер. Если третье обслуживающее устройство занято, то изделие остается на ленте конвейера и через 12 единиц времени снова попадает к этому устройству. Время обслуживания третьего устройства распределено экспоненциально с математическим ожиданием 3. после обслуживания на третьем устройстве изделие покидает систему. Построить имитирующую данный пример компьютерную модель на каком-либо языке программирования, предусмотрев при этом сбор статистики о времени пребывания изделия в системе и количество изделий на ленте каждого конвейера. Построить гистограмму для времени пребывания изделия в системе.
В данном примере используется нормальное и экспоненциальное распределение, математическое ожидание и среднеквадратичное отклонение.
Нормальное распределение. Генератор нормально распределенной случайной величины X можно получить по формулам:
12
Y=√σІX-6√σІ+µ X=∑Τј, где
j=1
Τј (j=1,…,12) - значение независимых случайных величин, равномерно распределенных на интервале (0, 1).
Равномерное распределение. Равномерное распределение случайной величины Х на отрезке [a,b] выражается через равномерно распределенную на отрезке [0,1] случайную величину R формулой:
X=a+(b-a)R
Экспоненциальное (показательное) распределение. Методом обратных функций можно показать, что показательное распределенная случайная величина Xсвязана со случайной величиной R, распределенной на [0,1], соотношением:
Y=1/α*ln(1-R) , где α – параметр показательного закона.
Математическое ожидание. Математическим ожиданием, т.е. средним значением случайной величины X называется числовая величина, вычисляемая по формуле:
+∞
MX=∫ xdF(x)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--