Курсовая работа: Коррозиестойкие конструкционные материалы
Металлические и неметаллические материалы, способные противостоять разрушительному действию агрессивных сред; применяются для изготовления аппаратов, трубопроводов, арматуры и др. изделий, предназначенных для эксплуатации в условиях воздействия кислот, щелочей, солей, агрессивных газов и др. агентов. Под стойкостью материала понимают его способность сопротивляться коррозии в конкретной среде или в группе сред. Материал, стойкий в одной среде, может интенсивно разрушаться в другой. Способность материалов сопротивляться окислению при высоких температурах в газообразных средах (воздух, О2, СО2 и т. д.) называется жаростойкостью. К жаростойким материалам относятся сплавы железа с хромом (нержавеющие стали), сплавы титана, циркония, молибдена, тантала. Основной метод повышения жаростойкости сплавов на основе железа - легирование их элементами, способными создать на поверхности металла защитную окисную плёнку, препятствующую дальнейшему окислению. Такими элементами, кроме хрома, являются кремний, алюминий. В тех случаях, когда наряду с жаростойкостью требуется высокая прочность, применяют сплавы на никелевой основе, типа нимоников, инконелей.
Стойки к окислению в газообразных и многих жидких средах благородные металлы: платина, золото. В кислых окислительных средах, например в азотной кислоте, коррозионностойки хромоникелевые и хромистые нержавеющие стали. Наиболее широко применяется хромоникелевая аустенитная нержавеющая сталь 1X18H10T, содержащая 0,1% С, 18-20% Cr, 9-11% Ni и 0,35-0,8% Ti. Титан или заменяющий его ниобий вводятся для устранения специфического вида разрушения - межкристаллитной коррозии. При указанном содержании никеля сталь имеет аустенитную структуру, обеспечивающую высокую пластичность и способность к технологическим обработкам, в частности к сварке. Однако никель - дорогой и дефицитный легирующий элемент. Поэтому в ряде аустенитных нержавеющих сталей он частично или полностью заменен на марганец. Нержавеющая сталь, содержащая лишь хром, труднее поддаётся технологической обработке, но более прочна. Для изделий, в которых требуется сочетание высокой коррозионной стойкости и прочности, применяют хромистые стали мартенситного класса, содержащие 0,2-0,4% С и 12-14% Cr. Стали с 25%-ным содержанием Cr обладают высокой стойкостью, но непрочны и плохо поддаются технологической обработке.
В концентрированных азотной и серной кислотах стойки железо и низколегированные (содержащие менее 2-3% легирующих элементов) стали. Стойкость сталей в этих условиях определяется их способностью к пассивированию в результате образования на их поверхности тонких, но очень плотных окисных плёнок (см. Пассивирование металлов). Легирование стали хромом увеличивает эту способность. В горячих растворах серной кислоты стойки стали, легированные 25% Cr, 25% Ni, 2-3% Cu, сплавы титана, свинец. В средах, содержащих хлориды, аустенитные нержавеющие стали, а также сплавы алюминия подвергаются язвенной коррозии и особому виду разрушения - коррозии под напряжением (см. Коррозия металлов). Для борьбы с коррозией под напряжением (коррозионным растрескиванием) повышают содержание Ni в сталях до 40% или вводят в них до 1,5% Cu. В хлоридсодержащих средах, в том числе в растворах соляной кислоты, стойки сплавы титана и сплав на никелевой основе, включающий в качестве компонента молибден, - хасталлой.
В природных водах (пресной и морской) при температурах до 100 °С стойки медь и её сплавы (бронза, латунь), а также алюминий и сплавы алюминия.
Среди неметаллических неорганического происхождения можно отметить графит, алюмосиликаты, чистый кремнезём. Кварцевое стекло, в частности, стойко во многих средах и широко применяется для изготовления химической посуды. Для футеровки металлических корпусов аппаратов в производстве минеральных кислот широко применяют различные природные материалы (горные породы андезит, базальт и др.). Стоек во многих водных средах и ряд органических материалов: фторопласты (тефлон), полиэтилен, полистирол и т. д. Однако все они применимы при температурах не свыше 100-200 °С.
Коррозионную стойкость материалов можно повысить, если нанести на них защитные покрытия. Для защиты от атмосферной коррозии широко применяют цинкование, анодирование, алитирование (покрытие алюминием), никелирование, хромирование, эмалирование, а также нанесение органических материалов - лакокрасочных покрытий. Для замедления разрушения материалов в агрессивных средах широко используют ингибиторы коррозии (см. Ингибиторы химические).
2.2 Новые коррозионностойкие материалы
Нержавеющие стали, обладающие повышенной стойкостью против питтинговой коррозии, повышенная стойкость обеспечивается регулированием состава сталей по легирующим (Cr, Si, Ni, Mo) и примесным (S, Mn, O, Al) элементам;
при пониженном содержании Mo (<1%) и Ni (10-11%) не уступают по коррозионной стойкости сталям типа Х17Н13М3Т, Х17Н14М3 и др;
перспективны для использования на предприятиях химической, нефтехимической, и др. отраслей промышленности, агрохимического комплекса, а также при производстве коррозионностойкой биметаллической продукции.
Нержавеющие стали, обладающие повышенной стойкостью против межкристаллитной коррозии повышенная коррозионная стойкость обеспечивается регулированием примесного состава (S,P, Si) сталей и их дополнительным модифицированием, в частности, бором;
перспективны для использования в сильноокислительных средах, например, на предприятиях по производству минеральных удобрений и искусственных волокон.
Углеродистые коррозионностойкие стали с регулируемым структурно-фазовым составом повышенная коррозионная стойкость обеспечивается созданием ферритно-перлитной структуры, обладающей повышенными механическими и коррозионными характеристиками;
требуемые характеристики достигаются проведением специальных термических обработок;
перспективны для строительства трубопроводов различных назначений, например, нефтегазопроводов, теплотрасс и др.
Латуни с регулируемым структурно-фазовым составом обладают повышенной стойкостью против структурно-избирательного рстворения;
перспективны для кораблестроения и строительства морских сооружений, а также для гидротехнических сооружений, эксплуатируемых в высокоминерализованных средах.
Карбидизированные стали
повышенные стойкость против коррозии и износостойкость обеспечиваются созданием поверхностно легированного слоя;
разработаны различные способы термодиффузионного хромирования, позволяющие получать поверхностные слои с заданными свойствами;
перспективны для использования в неокислительных высокоагрессвных средах, в том числе, в условиях воздействия абразива;
используются на предприятиях по производству минеральных удобрений России и Украины;
перспективны для использования в качестве коррозионно- и износостойких металлических материалов.
Хромированная лакированная жесть представляет собою жесть из углеродистой стали с нанесенным на её поверхность тонким (примерно 0,05 мкм) слоем хрома (или сплава Fe-Cr), дополнительно покрытым обычным или пищевым лаком;
предназначена для использования в качестве коррозионностойкого тароупаковочного материала для консервной, пищевой и химической промышленности;
способ получения - электрохимический, отличающийся экологической чистотой благодаря использованию безвредных электролитов на основе Cr(III) взамен токсичного раствора Cr(VI).
2.3 Коррозионно-стойкие (нержавеющие) стали
В зависимости от химического состава коррозионно-стойкие стали делятся на хромистые и хромоникелевые
Хромистые стали
Стали мартенситного класса марок 20X13, 30X13 и 40X13 содержат в среднем около 13% хрома. Это минимальное количество хрома, делающее сталь нержавеющей.
Указанные стали устойчивы против коррозии в атмосфере, слабых растворах органических кислот и солей и других агрессивных средах.