Курсовая работа: Культуры изолированных клеток и тканей как новый источник для получения лекарственного сырья

Как видно из представленных данных, в каллусной культуре, происходит как уменьшение общего содержания ФС, так и обеднение их качественного спектра. Однако, способность к синтезу характерных для чайного растения флаванов (представленных простейшими катехинами и их биогенетическими аналогами проанотоцианидинами), а также фенольного полимера лигнина сохраняется. При этом содержание проантоцианидинов и лигнина оказывается даже выше, чем в исходной ткани. Как свидетельствуют данные электронно-микроскопических исследований, это обусловлено, по-видимому, активацией эндомембранной системы клеток (эндоплазматического ретикулума и аппарата Гольджи), являющиеся местом синтеза фенилпропаноидных предшественников. Из всего этого следует, что по составу фенольного комплекса и активности фенольного метаболизма гетеротрофная каллусная культура приближается к тканям корня интактного растения.

К числу факторов, способных оказывать влияние на биосинтетический потенциал клетки, относятся гормоны и гормоноподобные соединения, а также свет.

В гетеротрофной каллусной культуре чайного растения НУК (2*10-5 М), введённая в питательную среду взамен 2,4-Д, значительно стимулирует образование растворимых ФС (примерно в 10 раз) и в меньшей степени лигнина (в 3 раза). Это согласуется с литературными данными о том, что НУК может быть использована в качестве ауксина для «продукционных» сред, т. е. сред, способствующих накоплению вторичных соединений.

В отличии от НУК, 1 мг/л кинетина (5*10-6 М) способствует главным образом лигнификации тканей ( в 3 раза по сравнению с контролем), лишь незначительно влияя на образование флаванов.

Таким образом, введением в питательную среду гормоноподобных соединений можно добиться направленной регуляции синтеза определённых типов ФС в культивируемых in vitro клетках и тканях. При этом ауксины (НУК в большей степени, чем 2,4-Д) способствуют синтезу растворимых ФС, в том числе и характерных для чайного растения флаванов, тогда как цитокинины преимущественно воздействуют на образование лигнина. При этом во всех случаях происходит лишь количественные изменения в синтезе ФС, что обусловлено, по-видимому, активацией ферментов лишь тех звеньев фенольного метаболизма, которые являются общими для изученных полифенолов.


Влияние света. Так, перенесение гетеротрофных каллусных культур чайного растения в условия непрерывного освещения во время первых двух субкультивирований приводит главным образом к увеличению образования лигнина ( в 1,5 раза), тогда как образование растворимых ФС несколько снижается.

Влияние длительного освещения на образование суммы растворимых ФС(1), флаванов(2) и лигнина(3) в каллусной культуре чайного растения (в мг/г сухой массы). К – контроль; а – темнота; б, в – свет.

При длительном же пассировании культур в условиях непрерывного освещения (7 культуральных циклов) содержание суммы растворимых ФС, а также флаванов значительно увеличивается. Как показали электронно-микроскопические исследования, это связано с формированием в ткани хлоропластов. Следует также отметить, что такие фотомиксотрофные каллусные культуры помимо флаванов синтезируют ещё один класс характерных для чайного растения ФС, а именно флавонолы. Последние представлены кемпферолом и кверцетином, а также несколькими их гликозидами. Таким образом, формирование в каллусной культуре хлоропластов, являющихся одним из центров синтеза ФС в клетках растений, оказывает значительное влияние на их биосинтетический потенциал и, главное, способствует расширению спектра синтезируемых ФС.

Таким образом, полученные данные свидетельствуют о том, что в случае гетеротрофных (не содержащих хлоропласты) каллусных культур усиление образования ФС при действии фитогормонов (ауксинов и цитокининов) или света ( на протяжении первых субкультивирований) происходит лишь за счёт активации ряда ферментов фенольного метаболизма (фенилаланинаммиаклиазы, 4-гидроксилазы коричной кислоты, оксициннамоил-КоА-лигазы и др.). В случае же частично фототрофных (содержащих хлоропласты) культур увеличение образования ФС происходит за счёт двух слагаемых: активации внехлоропластовых ферментных систем (как в первом случае) и благодаря функционированию в хлоропластах специализированного центра биосинтеза ФС.

3.2 Образование b-карболиновых алкалоидов в культуре ткани гармалы обыкновенной

Гармала обыкновенная (Peganum harmala) – лекарственное растение, относящееся к семейству парнолистниковых (Zygophyllaceae) и широко применяемое в народной и официальной медицине. Терапевтический эффект экстрактов гармалы, обладающих значительным влиянием на сердечно-сосудистую деятельность и на центральную нервную систему, обусловлен содержанием в ней алкалоидов, которые оказывают ингибирующее действие на такие ферменты, как моноаминооксидаза и ацетилхолинэстераза. Помимо этого, алкалоиды гармалы проявляют антибактериальную активность, которая увеличивается при использовании УФ-света, что свидетельствует об их фототоксичности.

В целом растении обнаружены два типа алкалоидов – хиназолиновые, производные антраниловой кислоты, и индольные b-карболинового типа, производные триптофана. При этом надземная часть растения содержит оба типа алкалоидов, в то время как b-карболиновые алкалоиды характерны в основном для корней растения. Наиболее богаты алкалоидами семена гармалы, в которых содержание этих соединений может достигать 5 – 6 %. Корни растения в ранний период вегетации содержат около 1% алкалоидов, в то время как надземная часть – лишь 0,03%. Характер распределения алкалоидов и изменение их содержания в целом растении в течение его вегетации послужили основанием для высказывания предположения о том, что место синтеза b-карболиновых алкалоидов являются корни гармалы.

Для экспериментальной проверки правильности этой гипотезы были введены в культуру каллусные ткани от гипокотиля и корня проростка гармалы, полученного из семян египетского происхождения. Ткани выращивали на агаризованной среде Мурасиге и Скуга с добавлением 2,4-Д (1 мг/л) и кинетина (1 мг/л). несмотря на то, что каллусные ткани были получены от частей ювенильного растения, они имели некоторые морфологические различия, которые сохранялись в течение четырёхлетнего культивирования: гипокотильная ткань была более плотной и отличалась от корневой ткани своей кремовой окраской, причём в ряде случаев на отдельных участках ткани была заметна яркая красная пигментация. Общим свойством тканей была их относительная гомогенность и отсутствие визуальных признаков дифференциации.

В каллусных тканях гармалы первых пассажей было обнаружено присутствие веществ, имеющих голубую и ярко-жёлтую флуоресценции. При экстрагировании лиофилизированных тканей метанолом и последующем хроматографировании концентрированных экстрактов в тонком слое силикагеля в системе хлороформ : метанол : аммиак (10 : 4 : 1) было показано присутствие в тканях четырёх b-карболиновых алкалоидов – гармина, гармалина, гармола и гармалола, типичных для корней целого растения. Идентификация алкалоидов в каллусных тканях проводилась путём хроматографирования экстрактов с аутентичными образцами алкалоидов в различных системах растворителей и сопоставления спектров поглощения и спектров флуоресценции обнаруженных веществ с соответствующими спектрами чистых алкалоидов.

По своему качественному составу гипокотильная и корневая ткани не различались. Доминирующими алкалоидами в обеих тканях были гармин и гармалол, количественное содержание которых определяли по поглощению в УФ-свете (гармин – при 245 нм, гармалол – при 390 нм).

В условиях оптимального, но недифференцированного роста содержание гармина в каллусных тканях было почти в 500 раз, а гарма?

К-во Просмотров: 217
Бесплатно скачать Курсовая работа: Культуры изолированных клеток и тканей как новый источник для получения лекарственного сырья