Курсовая работа: Линии задержки на ПАВ
560
18
DL872
(CF873)
4433619
(3,93 ...4,93)
128
-23
560
18
Основные параметры приборов на ПАВ:
1) время задержки Т, определяемое длиной пути L, проходимого упругими волнами в звукопроводе от входного преобразователя до выходного, и скоростью распространения УЗ v, т.е. T =Lv;
2) рабочая частота f0, приблизительно равная резонансной частоте преобразователей, причем частота задерживаемого радиосигнала должна совпадать с f0, а в случае задержки видеосигнала его надо сначала преобразовать в радиосигнал с частотой заполнения f0, а затем выделить огибающую (продетектировать);
3) полоса пропускания f, определяемая добротностью преобразователей и частотной характеристикой потерь в звукопроводе;
4) уровень ложных сигналов - отношение амплитуды наибольшего из ложных сигналов к амплитуде задержанного сигнала;
5) температурный коэффициент задержки, определяемый зависимостью скорости распространения упругих волн в звукопроводе от температуры.
2. Физические основы работы линий задержки на ПАВ
Работа различных приборов пьезоэлектроники основана на пьезоэлектрическом эффекте, который был открыт в 1880 г. французскими учеными братьями П. Кюри и Ж. Кюри. Слово "пьезоэлектричество" означает "электричество от давления". Прямой пьезоэлектрический эффект или просто пьезоэффект состоит в том, что при давлении на некоторые кристаллические тела, называемые пьезоэлектриками, на противоположных гранях этих тел возникают равные по величине, но разные по знаку электрические заряды. Если изменить направление деформации, т.е. не сжимать, а растягивать пьезоэлектрик, то заряды на гранях изменят знак на обратный. Акустоэлектроника - сравнительно новая область электроники, посвященная теории и практике создания устройств, основанных на акустоэлектронном взаимодействии и служащих для преобразования и обработки сигналов. Это могут быть преобразования временные (например, задержка сигналов или изменение их длительности), частотные и фазовые (например, преобразование частоты и спектра, фазовый сдвиг), амплитудные (усиление и модуляция), такие сложные преобразования, как кодирование и декодирование, интегрирование и т. п. В ряде случаев акустоэлектронные методы более удобнее обычных, чисто электронных, а иногда даже единственно пригодны. На основе акустоэлектронного взаимодействия могут быть созданы пассивные устройства, например линии задержки, фильтры, и активные - усилители, генераторы, модуляторы и др.
Принцип устройства линии задержки на ПАВ
Наиболее широкое применение получают акустоэлектронные приборы на ПАВ. К ним относятся линии задержки, полосовые фильтры, резонаторы, различные датчики т. п. Принцип устройства таких приборов показан на рис. 2.
Рис. 2 - Принцип устройства электронного прибора на ПАВ
В качестве звукопровода 1 обычно применяется пластина, или стержень, или провод из пьезоэлектрического материала (например, ниобат лития LiNbO3 , пьезокварц SiO2 , германат висмута Bi12 GeO20 , пьезокерамика) с тщательно отполированной поверхностью, на которой расположены электромеханические преобразователи: входной 2 и выходной 3. Эти преобразователи обычно выполняются в виде гребенчатых электродов из тонкой металлической пленки толщиной 0,1-0,5 мкм. Их называют встречно-штыревыми преобразователями (ВШП). К входному ВШП подключен источник электрического сигнала, и в звукопроводе возникает ПАВ. А в выходном преобразователе, к которому подключена нагрузка, возникает электрический сигнал. Края на обоих концах пластинки искажаются или нагружаются абсорбционной резиной для подавления отражения в направлении распространения первичной волны. Если на одну из систем ВШП подается высокочастотное напряжение, то на поверхности пластинки за счет обратного пьезоэффекта генерируется поверхностно-акустическая волна. Эта волна затем распространяется вдоль поверхности пластинки до тех пор, пока не попадет на другую систему ВШП, где она преобразуется обратно в высокочастотное напряжение. Время задержки между входным и выходным электрическими сигналами определяется по формуле: , где l - среднее расстояние между системами ВШП,
v - скорость распространения поверхностно-акустической волны.
Максимальное акустоэлектрическое взаимодействие систем ВШП имеет место при характеристической частоте , определяемой следующим соотношением:
, где h - шаг ВШП.
Физика ПАВ.
Поверхностные акустические волны (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности твердого тела или вдоль границы твердого тела с другими средами и затухающие при удалении от границ. ПАВ бывают двух типов: с вертикальной поляризацией, у которых вектор колебательного смещения частиц среды расположен в плоскости, перпендикулярной к границе (вертикальная плоскость), и с горизонтальной поляризацией, у которых вектор смещения частиц среды параллелен границе и перпендикулярен направлению распространения волны. Простейшим и наиболее часто встречающимся на практике ПАВ с вертикальной поляризацией являются Рэлея волны, распространяющиеся вдоль границе твердого тела с вакуумом или достаточно разряженной газовой средой. Фазовая скорость волн Рэлея cR =0,9 ct ;где ct – фазовая скорость плоской поперечной волны. В простом случае изотропного твердого тела эта
|
|
|
Ширина электродов и промежутков между ними в направлении распространения ПАВ обычно равна l/4, где l - длина ПАВ. Толщина электродов обычно не превышает 0.1 - 0.2 мкм.