Курсовая работа: Машинное зрение

· Отмечается рост интереса к системам машинного зрения со стороны нанотехнологических фирм, биотехнологических компаний и в сфере медицины (автоматический анализ медицинских изображений – рентген, томография, УЗИ)

· Востребовано машинное зрение и в области охранных систем (идентификация личности, детекторы движения, распознавание и отслеживание движущихся объектов, распознавание автомобильных номеров и т.д.);

· Системы машинного зрения востребованы в области контроля качества и инспекции продуктов питания (в настоящее время оценка качества бисквитов на кондитерской линии осуществляется со скоростью 60 пирожных в секунду), а также в области визуального контроля и управления (учет, считывание штрих-кодов).

· Машинное зрение применяется в системах распознавания рукописного и печатного текста.

3. Техническая составляющая машинного зрения

3.1 Методы обработки изображения

В системах машинного зрения, для решения перечисленных задач, используются различные технологии и методы. Ниже перечислены основные методы обработки изображения:

· Счетчик пикселей : подсчитывает количество светлых или темных пикселей и на основе результата делает необходимые выводы об изображении.

· Выделение связанных областей : Связная область изображения – это, с одной стороны, тип объекта, все еще очень близко связанный с растровым изображением, и в то же время – это уже некая самостоятельная семантическая единица, позволяющая вести дальнейший геометрический, логический, топологический и любой другой анализ изображения

· Бинаризация : преобразует изображение в серых тонах в бинарное (белые и черные пиксели).

· Гистограмма и гистограммная обработка: Гистограмма характеризует частоту встречаемости на изображении пикселей одинаковой яркости.

· Сегментация : используется для поиска и/или подсчета деталей. Сегментацией изображения называется разбиение изображения на непохожие по некоторому признаку области. Предполагается, что области соответствуют реальным объектам, или их частям, а границы областей соответствуют границам объектов.

· Чтение штрих-кодов : декодирование 1D и 2D кодов, разработанных для считывая или сканирования машинами

· Оптическое распознавание символов: автоматизированное чтение текста, например, серийных номеров

· Измерение : измерение размеров объектов в дюймах или миллиметрах

· Сопоставление шаблонов : поиск, подбор, и/или подсчет конкретных моделей

· Инвариантные алгоритмы сопоставления точечных особенностей на изображениях: обнаружения и сопоставление точечных особенностей на изображениях.

· Методы идентификация личности по радужной оболочке глаза

· Различные методы восстановления формы объекта по изображениям

В большинстве случаев, системы машинного зрения используют последовательное сочетание этих методов обработки для выполнения полного инспектирования. Например, система, которая считывает штрих-код может также проверить поверхность на наличие царапин или повреждения и измерить длину и ширину обрабатываемых компонентов.

3.2 Компоненты системы

Типовая система машинного зрения состоит из одной или нескольких цифровых или аналоговых камер (черно-белые или цветные) с подходящей оптикой для получения изображений, подсветки и объекта (рис. 4), оборудования ввода/вывода или каналы связи для доклада о полученных результатах. Кроме того, важна и программная составляющая систем машинного зрения, а именно программное обеспечение для подготовки изображений к обработке (для аналоговых камер это оцифровщик изображений), специфичные приложения программного обеспечения для обработки изображений и обнаружения соответствующих свойств.


Рис.4. Состав типовой системы машинного зрения

Матрица чувствительных элементов , входящих в состав видеокамеры, предназначена для получения цифрового изображения. В состав матрицы чувствительного элемента входит множество аналого-цифровых преобразователей, предназначенных для преобразования информации о световой интенсивности в цифровое значение.

Объектив позволяет камере фокусироваться на определенном расстоянии и получать четкое изображение объекта. В случае, когда объект находится вне фокусного расстояния, изображение получается нерезким (размытым, с нечеткими краями), что ухудшает возможность обработки видеоряда. В отличие от обычных цифровых фотоаппаратов с объективами, поддерживающими функции автофокусировки, в машинном зрении применяется оптика с фиксированным фокусным расстоянием или ручной настройкой фокуса. Существуют различные типы объективов для самых разных задач (стандартные, телескопические, с широким углом обзора, с увеличением и другие), и выбор правильного типа оптики - важный этап при проектировании системы машинного зрения.

Подсветка - еще один важный элемент в машинном зрении. Благодаря использованию различных типов освещения можно расширить круг задач, решаемых машинным зрением. Существует различные типы подсветок, но наиболее популярным является светодиодная - в связи с ее высокой яркостью. При этом современный уровень развития светодиодной техники обеспечивает большой срок службы устройства и малое энергопотребление.

3.3. Принципы функционирования систем машинного зрения

Последовательность действий, выполняемых системой машинного зрения, можно представить в следующем виде:

К-во Просмотров: 806
Бесплатно скачать Курсовая работа: Машинное зрение