Курсовая работа: Математическая модель цифрового вольтметра

При интегрировании “вниз”:

;

В момент с учетом (1) имеем:

;(2)

Так как процесс интегрирования опорного напряжения заканчивается когда выходное напряжение интегратора становится равным нулю, то, положив в формуле (2) , получим:


(3)

Перепишем (3) в виде: ; (4)

где tи - время управляющего импульса.

Так как у нас время измерения равно 0,05с., то время первого такта интегрирования равно : с.

Для более точного расчёта примем с.(исходя из того, что в сети существуют помехи и для уменьшения вероятности их появления Т1 возьмём кратным периоду колебания (f=50 Гц, Т1=1/f=0.02 c) ).

Для обеспечения заданной точности измерения (0.008%), входное напряжение должно измеряться с точностью 0,0008В. Следовательно в схеме индикации мы используем 5 индикаторов. Одному вольту входного напряжения у нас соответствует Nx=10000 импульсов. Так как максимальное время измерения Т1=0,02с., то частота счётных импульсов поступающих с генератора равна:

кГц

Частота управляющего импульса вычислим по формуле:

Гц


3. Схемотехника узлов цифрового вольтметра

3.1 Расчет входного устройства

Входное устройство состоит из схемы защиты от перенапряжения, схемы индикации перегрузки и обратной полярности, а также делителя.

Делитель предназначен для выбора пределов измерения за счет деления входного напряжения. В нашем случае два предела измерения: -10 – 0 B, -1–0 B.

Рассчитаем делитель:

В качестве R3, R4 и R5 используем прецизионные резисторы типа С5-60 мощностью 0.25 Вт и с допуском 0.001% с предельным рабочим напряжением 250В, что обеспечит необходимый запас прочности по напряжению. Подбираем окончательно значения сопротивлений резисторов делителя.

Суммарная максимальная погрешность делителя составляет

примем входное сопротивление вольтметра равным 10 МОм, тогда R4= 9,9 МОм, R3= 90кОм, R5= 10кОм.

Для защиты от перенапряжения воспользуемся стабилитроном и резистором, ограничивающими ток на входе. Для данной схемы возьмём стабилитрон 2C311 [6], Iном которого равен 5 мА и напряжение стабилизации Uст равно 1.3 В. Тогда R6 выберем из расчёта:

Устройство индикации перенапряжения и полярности построено на двух компараторах К554СА3 и двух светодиодах АЛ341 — DA3.2, DA4.1 и VD2,VD3 соответственно. Работа устройства: если напряжение с делителя не превышает десяти вольт, то на выходе компаратора DA3.2 – нулевой сигнал. При увеличении измеряемого напряжения до величины более 10 В на выходе компаратора появляется сигнал логической 1 и светодиод VD1 начинает светиться.

Если напряжение на делителе положительное, то компаратор DA4.1 на выходе имеет сигнал «0». Если же напряжение отрицательное, то на выходе DA4.1 – «1», и светодиод VD4 сигнализирует об обратной полярности измеряемого напряжения. Микросхема К554СА3 выбрана на основе [4], а светодиоды АЛ341 на основе [5], там же находятся их основные характеристики.

В схеме входного устройства для усиления напряжения в 10 раз воспользуемся операционным усилителем К140УД6.

Рассчитаем сопротивления R1 и R2:

,,

Рисунок 5 – Входное устройство


3.2 Электронный переключатель

Электронный переключатель DA1 построен на микросхеме КР590КН8 [4]. Этот ключ работает следующим образом: при подаче управляющего импульса на #1, соединяется линия 1. При подаче управляющего импульса на #2, соединяется линия 2. На выходе ключа линии 1 и 2 соединены вместе. Элемент «И-НЕ» DD4.1 служит для переключения измеряемого напряжения на опорное напряжение в момент t1 (см рисунок 2), для того чтобы интегратор начал процесс интегрирования «вниз». Элементы DD3.1 и 3.2 служат для того, чтобы интегрирование «вниз» останавливалось на нуле.

Рисунок 6 – Электронный переключатель

3.3 Интегратор

Интегратор предназначен для выполнения математической операции интегрирования. Напряжение на выходе этого устройства пропорционально интегралу от входного напряжения. Такую операцию выполняет инвертирующий усилитель с цепью обратной связи, образованной резистором Rи конденсатором С.

К-во Просмотров: 342
Бесплатно скачать Курсовая работа: Математическая модель цифрового вольтметра