Курсовая работа: Металлургическая теплотехника

Задание. 2

Содержание. 3

Введение. 4

Производство стали в конвертерах на кислородном дутье. 5

Кислородно-конвертерный процесс. 5

Конструкция кислородного конвертера. 6

Примерный расчет кислородного конвертора. 7

Материальный баланс. 8

Определение основных размеров конвертера. 11

Расчет кислородной фурмы.. 12

Тепловой баланс. 13

Список использованной литературы.. 18

Введение

В конвертерах получают сталь из жидкого чугуна путем окисления C, Si, Mn, P и S до заданных пределов, соответствующих составу стали. Окислителем является кислород, содержащийся в воздухе, или технический чистый кислород. Реакции окисления примесей экзотермичны, сопровождаются выделением большого количества тепла, достаточного для нагрева стали до заданной температуры. Таким образом, в конвертерных процессах тепло необходимое для нагрева шихтовых материалов, выделяется в самом материале за счет химических реакций, т. е. за счет эффекта теплогенерации.

Выплавка стали в конвертерах является самым высокопроизводительным способом передела чугуна в сталь. Сущность конвертерного производство стали заключается в продувке жидкого чугуна воздухом (бессемеровский и томасовский процессы) или кислородом (кислородно-конвертерный процесс). Несмотря на высокую производительность конвертеров с воздушным дутьем, не находят широкого распространения главным образом вследствие низкого качества выплавляемого метала и особых требований к составу чугуна. Поэтому конвертеры воздушным дутьем практически вытеснены кислородными.

Кислородно-конвертерный способ производства стали заключается в том, что технически чистый кислород через водоохлаждаемую фурму в виде струи вводят в жидкий чугун сверху. В месте соприкосновения струи кислорода и металла происходит бурное окисление примесей чугуна, что приводит к значительному повышению температуры металла. Значительный избыток тепла дает возможность перерабатывать обычные чугуны с добавкой скрапа железной руды и извести.

Производство стали в конвертерах на кислородном дутье

Обогащение дутья кислородом увеличивает производитель­ность конвертеров и улучшает качество стали. Ускоренное окис­ление примесей сокращает длительность продувки и улучшает тепловой баланс конвертера: потери тепла зависят от продолжи­тельности передела и количества газов, которое при обогащен­ном дутье уменьшается. В результате этого выявляются резервы тепла, позволяющие вводить охлаждающие добавки — скрап или железную руду и этим резко увеличить производительность по стали.

Полная замена воздушного дутья техническим кислородом могла бы полностью исключить азот из газов и резко снизить со­держание его в стали. Однако при продувке чугуна через днище конвертера техническим кислородом или дутьем высокого обо­гащения окислительные процессы развиваются с такой высокой интенсивностью и с таким большим выделением тепла, что из-за местного перегрева у входа дутья фурмы и днище быстро прогорают и требуют частой замены. В связи с этим обогаще­ние дутья кислородом возможно не более чем до 35%. Продувая чугун воздухом, обогащенным до 30% О2 , удается получить сталь с концентрацией азота 0,008—0,005%, близкую по качест­ву к мартеновской. Полное исключение азота из дутья возмож­но путем применения кислорода в смесях с водяным паром или двуокисью углерода. Диссоциация Н2 О и СО2 способствует пог­лощению избытка тепла и предупреждает местный перегрев, со­храняя фурмы и днище от преждевременного износа. Азот в стали таким путем снижается до содержания ~0,002%. Хорошо удаляются фосфор и сера. Продувка чугуна газовыми смесями распространена на ряде европейских заводов.


Кислородно-конвертерный процесс

Идея окисления чугуна кислородом сверху возникла при об­дуве металла в ковше в 1934 г. А. И. Мозговым. В промышлен­ном масштабе она была осуществлена на заводах Австрии в Линце и Донавице в 1952—1953 гг. С тех пор доля стали, вы­плавленной в кислородных конвертерах, непрерывно возрастает. Способ заключается в обработке жидкого чугуна в глуходонных конверторах кислородом, подаваемым при высоком давлении (800—1200 кН/м2 ) вертикальной фурмой, введенной через гор­ловину (рис.1).

Применение технического кислорода делает процесс незави­симым от состава чугуна; даже при малом содержании одного или нескольких элементов, дающих наибольший приход тепла (Si, Мn, Р), можно конвертировать чугун в сталь. Основная фу­теровка и основные шлаки позволяют успешно перерабатывать чугун с повышенным содержанием фосфора и серы. Кислородно-конвертерным способом перерабатывают чугун любого состава, однако наиболее выгодно следующее содержание примесей: 3,7—4,4% С; 0,3—1,7% Si; 0,4—2,5% Мп; 0,3% Р; 0,03—0,08% 5. Возможность конвертерного передела мартеновского чугуна по­зволяет упростить доменное производство данного завода вы­плавкой одного вида чугуна для двух передельных цехов. Чугун с содержанием 0,2—0,3% фос­фора продувают с промежуточ­ным сливом и наводкой нового шлака. Коли­чество добавляемого скрапа опре­деляется содержанием кремния и марганца в чугуне и его темпе­ратурой; оно достигает 25—30% от массы чугуна. Железная руда, применяемая как охладитель, должна содержать менее 8 % Si. Расход извести составляет до 9 % от массы металлической шихты.

Конвертеры новой конструкции имеют так называемую «тигельную» форму, т. е. делаются без разъ­емов. Цапфами, закрепленными на корпусе секторами или коль­цом, конвертор опирается на станины. Для поворачивания 100-тонного конвертора ставят два электродвигателя. Мощность каждого электродвигателя равна 95 кВт. Футеровка кислородного кон­вертора — двухслойная: слой, примыкающий к кожуху, изготов­лен из магнезитового кирпича и служит несколько лет, внутрен­ний слой, рабочий, заменяемый при каждом ремонте, выполнен из смолодоломитового или смолодоломитомагнезитового кирпича и выдерживает до 600 плавок.

Кислородное дутье подают вертикальной водоохлаждаемой фурмой, которую можно перемещать по высоте. Она состоит из трех коаксиально сваренных труб. По внутренней трубе пода­ется кислород, по наружным — подводится и отводится охлажда­ющая вода. Формирование кислородной струи производится медной головкой с одним или несколькими соплами. Сопло Ла-валя позволяет подавать кислород со скоростью более 500 м/с.

Изменяя расстояние от фурмы до поверхности ванны, управляют глубиной внедрения струи и образования зоны контакта ее со шлаком и металлом. Окислительные процессы в шлаке и на гра­нице шлак — металл регулируют изменением расхода кислоро­да. В реакционной зоне возникают высокие температуры, достигающие 2200—2400° С. Они вызывают испарение железа и его окисление в газах с выделением из конвертера бурого дыма. По этой причине из газов кислородных конвертеров необходимо улавливать пыль, состоящую из окислов железа.

Кислородно-конвертерный цех состоит из четырех пролетов — загрузочного, конвертерного и двух разливочных. Разливочные пролеты современных цехов имеют машины литья заготовок (МНЛЗ).

Кислородно-конвертерный процесс по химизму не отличается от бессемеровского и томасовского. Здесь также сначала окис­ляется железо, образующаяся закись железа растворяется в ме­талле, переходит в шлак, образуя железистый шлак, и окисляет примеси чугуна. Высокое давление дутья [(9,8—11,7)∙105 кН/м2 ] и его сильное окислительное воздействие в малой по объему реакционной зоне с высокими температурами создают условия для одновременного или практически одновременного окисления при­месей, чугуна (51, Мп, С). Периоды окисления отдельных эле­ментов, типичные для донной продувки чугуна воздухом, здесь выражены слабо (рис. 226). Окисление кремния заканчивается за первые 3—5 мин. Марганец окисляется одновременно, однако с меньшей полнотой, а затем частично вновь восстанавливается из шлака.

Важная особенность кислородно-конвертерного процесса — возможность окисления фосфора вскоре после подачи кислорода и дальнейшее усиление дефосфорации. Это объясняется быстрым образованием необходимого известково-железистого шлака. Окисление углерода также начинается сразу после начала подачи дутья. Средняя скорость выгорания углерода составляет 0,4—0,5% с/мин. Интенсивное выделение газовых пузырей под­нимает уровень расплавов и создает режим заглубленной струи. Десульфурация происходит в менее благоприятных условиях, чем дефосфорация, но успешнее, чем при донном воздушном дутье, достигая 40%, причем до серы переходит в газы в ви­де SО2 .

Возможность быстрого образования основного шлака в на­чале продувки позволяет успешно перерабатывать фосфористые чугуны, получая годные для удобрения шлаки, богатые Р2 Оз. Один из способов состоит в применении кусковой извести. В кон­верторе оставляют конечный шлак предыдущей плавки, добав­ляют к нему до 1 /5 общего расхода извести, продувают, вводя постепенно еще 20—25% СаО и железную руду. В слитом пос­ле этого шлаке оказывается не менее 20% Р2 О5 . Продолжая про­дувку, добавляют скрап, остальное количество извести и желез­ную руду. По другому способу (ОLP) известь в виде порошка вдувают через кислородную фурму. Железную руду загружают перед продувкой и после слива промежуточного шлака. Во вто­ром периоде добавляют скрап (охладитель), остальную известь и необходимое количество железной руды.

Применение технического кислорода резко улучшает качест­во конвертерной стали, прежде всего по азоту, концентрация ко­торого снижается до 0,007—0,002%. Механические свойства кислородно-конвертерной стали приближаются к свойствам мар­теновской стали и даже превышают их.

В настоящее время освоена выплавка кислородным конвер­тированием малоуглеродистой (кипящей и спокойной), рельсо­вой, низколегированной, динамной, трансформаторной, судостро­ительной, электротехнической и других сталей.

Тепловой баланс передела позволяет перерабатывать большие количества скрапа и использовать железную руду, что повыша­ет технико-экономическую эффективность кислородно-конвер­терного производства. С увеличением емкости конвертеров до 300—350 т эффективность производства увеличивается. Расход на передел кислородно-конвертерным процессом — низкий, ос­новная доля в себестоимости стали — стоимость материалов; строительство и ввод в действие конвертеров и конвертерных цехов осуществляется в более короткие сроки и значительно де­шевле мартеновских. Эти особенности определили на ближай­шее время кислородно-конвертерное производство — основным направлением развития сталеварения.

Примерный расчет кислородного конвертора

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 410
Бесплатно скачать Курсовая работа: Металлургическая теплотехника