Курсовая работа: Метод Жордана Гаусса
1.1 Постановка задачі
Нехай дано систему п лінійних алгебраїчних рівнянь з п змінними
(I=1.2…..n) (1)
Систему (1) можна записати у вигляді одного матричного рівняння
AX=B, (2)
де
матриця коефіцієнтів (індекс і вказує рівняння, якому належить коефіцієнт, а індекс j – змінну, при якій він стоїть),
,
відповідно стовпець вільних членів і стовпець змінних.
Упорядкована сукупність п чисел , яка, будучи підставленою в систему (1) замість
, перетворює всі рівняння в правильні числові рівності, називається розв’язком системи (1)
Методи розв’язування систем лінійних рівнянь можна поділити на дві групи: точні й ітераційні.
Точними називають такі методи, які дають змогу знайти точний розв’язок системи (1) за допомогою виконання скінченої кількості арифметичних операцій у припущенні, що всі обчислення виконуються точно (без округлень), а коефіцієнти системи і вільні члени – точні числа. Але на практиці всі обчислення виконуються з обмеженою кількістю десяткових розрядів, а ірраціональні коефіцієнти і вільні члени, якщо такі є, замінюються раціональними числами. Тому в процесі обчислення вдаються до округлень, а це означає, що розв’язки, які обчислюються за точними методами, фактично є наближеними числами з певними похибками (похибками округлень). До точних належать метод Гаусса, метод квадратних коренів, правило Крамера, сюди ж належить метод Жордана-Гаусса.
Інтераційними називають такі методи, які дають змогу знайти наближений розв’язок системи (1) із заздалегідь вказаною точністю шляхом виконання скінченої кількості арифметичних операцій, хоч самі обчислення можуть проводитись і без округлень, а коефіцієнти і вільні члени системи бути точними числами.
У процесі вивчення різних питань економіки, природознавства, техніки тощо доводиться розв’язувати системи алгебраїчних рівнянь. Зокрема, до таких систем зводиться чисельне розв’язування лінійних, диференціальних та інтегральних рівнянь. У таких системає коефіцієнти і вільні члени рівнянь – числа наближені. А це веде до появи додаткових (так званих неусуваних) похибок.
Якщо систему рівнянь у пам’яті машини записати навіть точно, то в процесі її розв’язування ЕОМ обов’язково виникнуть похибки округлень, які не можуть не вплинути на точність розв’язку. Проте, якщо матриця А системи (2) майже вираджена то можна сподіватися, що малі зміни в коефіцієнтах і (або) вільних членах також призведуть до значних змін у її розв’язку.
Якщо малі збурення коефіцієнтів і (або) вільних членів системи (1) дуже збурюють її розв’язок, то таку систему рівнянь називають погано обумовленою. Наприклад, якщо малі збурення коефіцієнтів і (або) вільних членів системи (1) мало збурюють її розв’язок, то таку систему називають добре обумовленою. Прикладом погано обумовленої є, наприклад, система вигляду:
(3)
розв’язком якої є пара (1;0). Якщо число 6,1 у правій частині першого рівняння системи (3) змінити на 0,02, то система
матиме розв’язком пару (5,1;-7,35). Отже, мале збурення (меньше 0,33%) одного з вільних членів системи (3) зовсім змінило розв’язок системи.
На щастя, на практиці системи рівнянь, погано обумовлені, зустрічаються дуже рідко.
1.2 Методи розв’язування задачі
Метод Жордана-Гаусса був розроблений двома вченими Жорданом та Гаусом (ві яких і пішла назва методу). Цей метод вони помітили після довгої практики роботи з системами рівнянь. Це можна пояснити складністю розв’язку цим методом.
Суть методу заключається в тому, щоб послідовно вилучати один, за одним стовпці елементів квадратної матриці, які стоять біля відповідних невідомих. Це вилучення повинно відбуватися за посередництвом деякого елемента входящого у вилучаючий стовпець. Цей основний елемент, відповідно зв’язує вилучаючий стовпець з деяким рядком системи.
При кожному вилученні стовпців необхідно проводити такі зміни в системі, щоб в кінцевому рузультаті число, яке опиняється в деякому рядку відповідало невідомій вилученого стовпця, зв’язаного один раз з даним рядком через основний елемент.
Проводити ці зміни в системі вдається за формулою обчислення двомірного визначника