Курсовая работа: Методика обучения решению текстовых задач алгебраическим методом
1. Анализ литературы по теме.
2. Изучение практического опыта применения методики обучения решению текстовых задач алгебраическим методом.
Глава I. Методика обучения решению текстовых задач алгебраическим методом как педагогическая проблема
1.1 Сущность алгебраического метода решения текстовых задач
Под алгебраическим методом решения задач понимается такой метод решения, когда неизвестные величины находятся в результате решения уравнения или системы уравнений, решения неравенства или системы неравенств, составленных по условию задачи. Иногда алгебраическое решение задачи бывает очень сложным[3] .
При решении задач алгебраическим методом основная мыслительная деятельность сосредотачивается на первом этапе решения задачи: на разборе условия задачи и составлении уравнений или неравенств по условию задачи.
Вторым этапом является решение составленного уравнения или системы уравнений, неравенства или системы неравенств.
Третьим важным этапом решения задач является проверка решения задачи, которая проводится по условию задачи.
При алгебраическом методе решения формируются 55 основных умений и навыков[4] :
1. Краткая запись условия задачи.
2. Изображение условия задачи с помощью рисунка.
3. Логические приёмы мышления: наблюдение и сравнение, анализ и синтез, абстрагирование и конкретизация, обобщение и ограничение, умозаключения индуктивного и дедуктивного характера и умозаключения по аналогии.
4. Выполнение арифметических действий над величинами (числами).
5. Изменение (увеличение или уменьшение) величины (числа) в несколько раз.
6. Нахождение разностного сравнения величин (чисел).
7. Нахождение кратного сравнения величин (чисел).
8. Использование свойств изменения результатов действий в зависимости от изменения компонентов.
9. Изменение (увеличение или уменьшение) величины (числа) на несколько единиц величины (числа).
10. Нахождение дроби от величины (числа).
11. Нахождение величины (числа) по данной её (его) дроби.
12. Нахождение процентов данной величины (данного числа).
13. Нахождение величины (числа) по её (его) проценту.
14. Нахождение процентного отношения двух величин (чисел).
15. Составление пропорций.
16. Понятие прямой и обратной пропорциональной зависимости величин (чисел).
17. Понятие производительности труда.
18. Определение производительности труда при совместной работе.
19. Определение части работы, выполненной в течение некоторого промежутка времени.
20. Определение скорости движения.
21. Определение пути, пройденного телом.
22. Определение времени движения тела.