Курсовая работа: Методы защиты металлов от коррозии

2,3789

10,38

5

1,1287

10,71

6

3,4023

9,6

В данной работе использовались следующие реактивы:

- рабочие растворы 0,1М серная кислота, хлористоводородная кислота, хлорид натрия;

- раствор для оксидирования: на 0,1 дм3 необходимо: 50 г NaOH, 20 г NaNO2 и 5 г NaNO3 .

- для определения защитных свойств полученного покрытия и распределения анодно-катодных зон: 0,15М HCl + 0,4М CuSO4 + 10% NaCl; 3 г NaCl+ 0,1 г K3 [Fe(CN)6 ]+ 2-3 капли раствора фенолфталеина на 100 см3 раствора.

- для определения пористости: на 100 см3 раствора 1 г K3 [Fe(CN)6 ]+1,5 г NaCl.

- ингибитор коррозионного процесса 2 см3 раствора 5*10-3 М алкилфосфоновой кислоты.

2 . Получение оксидной плёнки щелочным методом .

Два образца были зачистили наждачной бумагой, обезжирили, промыли дистиллированной водой и завесили в стакан со смесью для оксидирования. Нагрели до кипения и поддерживали слабое кипение в течение 30 минут. После этого обогрев прекратили, образцы вынули, тщательно промыли дистиллированной водой и высушили фильтром. При этом один из образцов дополнительно прокипятили в дистиллированной воде в течение 10 – 15 минут, затем вынули и снова тщательно просушили фильтром.

3. Определение пористости оксидной плёнки .

Для определения пористости оксидной плёнки брали 2 образца: оксидированный и неоксидированный. Накладывали на высушенные образцы фильтр, смоченный соответствующим раствором. Затем выдержали в течение некоторого времени, в течение которого синие точки не появились. Из этого можно сделать вывод о том, что полученный оксидный слой на одном из образцов не пористый.

4. Определение полярности и потенциала образцов.

Собирали ячейку, в неё с раствором NaCl подключали оксидированный и неоксидированный образцы. Получили полярность и значения потенциалов, которые представлены ниже:

-для оксидированного образца, который прокипятили 2 раза : E= -0,198;

-для оксидированного образца, который прокипятили 1 раз : E=+0,228.

5. Защитные свойства покрытия.

Поверхность оксидированного и неоксидированного образца парафинировали. В парафине делали отверстие и помещали туда каплю необходимого реактива, включали секундомер и замечали время изменения окраски всей капли. С течением времени капля должна была приобрести окраску красного цвета. Защитные свойства считают высокими, если это время изменения окраски больше 5 минут. В нашем случае это время составило: для неоксидированного –менее 5 мин. (плохие защитные свойства);для оксидированного и прокипяченного один раз – более 5 мин. , это хуже, чем у оксидированного и прокипячённого 2 раза. На основе этого сделать вывод о том, что защитные свойства полученного нами покрытия высокие у оксидированного образца прокипяченного 2 раза.

На одном из образцов определяли распределение анодно-катодных зон, используя соответствующий раствор. Через некоторый промежуток времени мы наблюдали изменение окраски в 2 цвета, что и свидетельствовало о распределение анодно-катодных зон: катодная зона окрасилась в розовый, анодная зона окрасилась в синий.

6. Коррозионные испытания.

В рабочий раствор (дистиллированная вода) завесили шесть образцов для коррозионных испытаний (из расчёта определения изменения массы через 1 неделю, 2 недели). При этом мы брали 2 раствора без добавки ингибитора и один с добавкой органического ингибитора. По прошествии указанного выше времени, мы вытащили образцы из растворов и взвесили их. Сначала с образовавшимися на пластинках продуктами, затем без них. Данные записали в таблицу ниже:

m1

m2

1

К-во Просмотров: 305
Бесплатно скачать Курсовая работа: Методы защиты металлов от коррозии