Курсовая работа: Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков

Доктор Дж. С. Хард, отчитывая доктора К. Виланда, с жаром не раз пеняет ему на то, что тот в своих выводах о "неокаменевшей кости" опирается на рекламную публикацию М. Швейцер с соавтором под характерным названием "Реальный Парк Юрского периода" в жалком научно-популярном журнале "Earth" в 1997 г. [18] (да и журнал тот, дескать, "приказал долго жить" после выхода третьего номера [14]).

Однако ни доктор Дж. С. Хард, ни доктор К. Виланд почему-то вовсе не упоминают на своих сайтах о работе в журнале по палеонтологии позвоночных, посвященной белкам в кости тиранозавра и опубликованной в 1994 г. [13]. Там эта кость, как указано нами выше, прямо названа "не окаменевшей" в заголовке статьи. Такое впечатление, что о работе [13] оба вышеуказанных доктора не ведают (иначе бы К. Виланд мог ей оправдаться). Получается, что о той работе знают только сама М. Швейцер со своим шефом и еще двумя соавторами (и помалкивают [14]), а также ваш покорный слуга. Либо — что в 1994 г. были кости другого тиранозавра. Последнее весьма сомнительно (да и сам факт "не окаменения" кости возрастом в десятки миллионов лет не изменится от того, какому тиранозавру она принадлежит). И малопонятно, почему в 1994 г., когда приступили к исследованию той кости, она была "не окаменевшей", а к моменту главной публикации в 1997 г. стала "частично недоокаменевшей". "Фоссилизировалась" она местами за три года, что ли?

Как ошиблись с окаменением в начале исследования, сказать трудно. Можно предположить, что все дело в конъюнктуре: спохватились, когда несколько неосторожно назвали не окаменевшую кость своим именем (как же тогда с десятками миллионов лет?), и решили лучше подчеркнуть, что имелись некоторые "недоокаменевшие" места в участках сосудистых структур, а вовсе не то, о чем подумали в 1994 г.

Еще. В своем очень познавательном обзоре по молекулярной палеонтологии за 2003 г. [1] ведущий специалист в этой области, доктор Мэри Швейцер, в списке цитированной литературы представила всего одну свою работу (не про тиранозавра) из порядка десяти имеющихся. Нет там в списке ни единой статьи по идентификации белков в кости тиранозавра (не окаменевших в 1994 г. и "недоокаменевших" в 1997 г.), хотя в тексте и упоминается глухо о "возможности присутствия гемоглобина в кости динозавра", причем представлена все та же, единственная ссылка по совсем другому поводу (Schweitzer et al., 1999). Упоминание имеется, но подробного разбора данных, а также самих статей, в списке источников нет.

Такого ваш покорный слуга за четверть века не встречал ни в одном обзоре: чтобы не ссылались на свои же работы, будучи, притом, ведущим специалистом в данной области и имея основополагающие публикации. Налицо, так сказать, какой-то "тайный замысел". Ничем другим объяснить подобное нельзя. Ведь совсем безобидным кажется на первый взгляд вопрос о "неокаменении" или "недоокаменении", однако, как видим, страсти вокруг него разгорелись серьезные. Такие страсти, что доктор М. Швейцер в 2003 г., видно, опасается цитировать саму себя за 1994–1997 гг. В самом деле — прослывет "слепой пособницей креационистов", и финансирование работ по грантам весьма ужмется. А за такое профессор Дж. Хорнер (Jack Horner), шеф М. Швейцер, по головке ее, наверное, не погладит.

По-видимому, именно поэтому в вышеупомянутом обзоре 2003 г. [1] доктор М. Швейцер цитирует одну из двух своих работ последних лет, из которой следует, что она, Швейцер, стоит строго на эволюционных позициях: там развивается гипотеза о молекулярных механизмах развития внешнего покрова в эволюционной линии динозавры — птицы [19, 20]. Причем цитированная работа опубликована в узкопрофильном журнале по экспериментальной зоологии ("Journal of Experimental Zoology") [20]. Зато нецитированная, по белкам тиранозавра, — в серьезном и широко известном журнале АН США [8].

Столь подробно указанный вопрос мы разобрали здесь потому, что следует понимать степень субъективизма в представлении данных не только интерпретаторами важных экспериментальных фактов (независимо от того, эволюционисты то или креационисты), но и самих исходных исследователей. В особенности же в такой области, как "эволюционизм" или Творение. К сожалению, часто получается так, что мало какие из выходящих за рамки общепринятого научные (а также околонаучные) факты и рассуждения можно сразу принимать на веру. Необходимо убедиться не только в достоверности исходного источника, но и изучить доступные сопутствующие публикации, в особенности фундаментальные.

4. Биологические макромолекулы, фрагменты которых идентифицированы в останках организмов возрастом в "десятки и сотни миллионов" лет

Как уже упоминалось, в конце 1980-х и, особенно, в 1990-х гг. молекулярная палеонтология достигла относительно больших успехов. Белки и ДНК были выделены и идентифицированы из различных ископаемых остатков порой прямо-таки умопомрачительного оцененного возраста. Подобные работы, помимо Кракова (Польша), проведены в целом ряде лабораторий США, в Австралии, Нидерландах, Германии и, если включить сюда митохондриальную ДНК кавказского "неандертальца", даже в России [21].

В табл. 1 представлены имеющиеся на настоящий момент данные по выделению и/или идентификации белков и ДНК из ископаемых остатков в палеонтологическом плане: т.е. древних в смысле геологической хронологии. Использованные в цитированных работах методы (иммунохимический анализ либо сравнительное исследование характеристик очищенных белков) позволяют однозначно утверждать: это фрагменты (порой значительные) эндогенных макромолекул, т.е. принадлежащих самим ископаемым организмам, а не являющиеся посторонними примесями за счет бактерий, грибков и др.

Можно видеть, что, несмотря на оцененные периоды в десятки, а порой и в сотни миллионов лет, в образцах остались не распавшиеся фрагменты белков, которые можно определить с помощью антител. То есть фрагменты такой величины, что они способны антителами узнаваться.

Относительно бета-кератина и коллагена следует отметить, что эти белки, вследствие своей особой жесткой молекулярной структуры, являются наиболее устойчивыми как к химическим воздействиям, так и к деградации микроорганизмами [34]. В то же время, относительно сохранности даже коллагена в ископаемых остатках все не так уж и ясно.

Ранние работы были сфокусированы на идентификации именно коллагена, поскольку он может быть детектирован в костях с помощью электронной микроскопии вследствие своей уникальной фибриллярной структуры [1]. И действительно, в целом ряде исследований коллагеновые микроструктуры были хорошо видны под электронным микроскопом в остатках костей динозавров, мамонтов и других ископаемых животных [6, 7, 13, 36–38]. Продемонстрировано, однако, что сохранение даже высокого уровня микроструктур не указывает с необходимостью на действительное наличие белковых молекул коллагена (структуры просто сохраняют их форму). В видимых коллагеновых структурах далеко не всегда идентифицируются специфические для этого белка аминокислоты [37] и не всегда такие структуры реагируют с антителами к коллагену [39].

Отсюда вывод: обнаружение под электронным микроскопом даже хорошо сохранившихся коллагеновых структур (и сосудистых стенок) внутри ископаемых костей не указывает однозначно на присутствие в них самого белка, поэтому ни к каким "сенсационным" креационистским выводам такие структуры в костях, например, динозавра [7], приводить не должны. Наверное, даже эти уже безколлагеновые образования вряд ли способны выдержать миллионы лет, но доказательств тому нет, поскольку в них, по-видимому, часто отсутствует лабильный органический материал (как в упомянутых выше псевдоморфозах песчаных мумий динозавров).

Представленные же в табл. 1 данные, в том числе по коллагену, отражают действительную идентификацию белковых фрагментов. Во всех перечисленных случаях действительно выделили и/или детектировали части белков. Наиболее сохранными оказываются, понятно, коллаген, кератины и остеокальцин, а наименее — более лабильные и более сложные белки с глобулярной структурой, в частности альбумин.

Имеется, однако, одно важное и фундаментальное исключение, связанное с работами все той же доктора Мэри Швейцер.

1. Кератины — белки, формирующие волосы, перья, чешую и т.п. образования. Вследствие жесткости своей молекулярной структуры очень устойчивы к внешним воздействиям. Бета-кератин для современных животных обнаружен только у рептилий и птиц (чешуя, перья) [34].

2. Представлена продолжительность периода или эпохи.

3. Коллаген. Соединительная ткань организма формирует хрящи, сухожилия, связки, остов костей и т.д. Механическая и поддерживающая функция этой ткани обеспечивается нерастворимыми нитями, образованными высокополимерными соединениями коллагена — самого распространенного белка животных. Мономеры коллагена представляют собой трехнитевые белковые "тяжи", которые связываются друг с другом поперечными молекулярными связями (сшивками), образуя коллаген. Такая жесткая структура обеспечивает механическую прочность при сопутствующей эластичности [34].

4. Остеокальцин — низкомолекулярный костный белок, содержащий много глутаминовой кислоты; специфичен для костей.

5. Результаты авторов из мормонского университета (США), по-видимому, спорны: имеется комментарий на данную работу ведущих молекулярных палеонтологов [35].

5. Фрагменты гемоглобина из кости тиранозавра (Tyrannosaurus rex)

В 1990 г. в восточной части штата Монтана выкопали останки тиранозавра. Почти сразу же (возможно, под влиянием фильма С. Спилберга), на Биологическом факультете университета штата Монтата, в г. Бозмене (Bozeman), США, началось исследование его костей в аспекте молекулярной палеонтологии. Работы проводились в группе ассистента профессора, доктора биологических наук (Ph.D.) Мэри Швейцер (Mary Higby Schweitzer). Руководителем лаборатории являлся (и является до сих пор) профессор Джек Хорнер.

Если посмотреть в Интернете страничку, посвященную сведениям о докторе М. Швейцер [40], то на фото перед вами предстанет симпатичная и жизнерадостная особа, имеющая, несмотря на свой не очень-то значительный возраст, солидный послужной список и, по-видимому, высокую профессиональную квалификацию. Именно доктор Мэри может ныне считаться, полагаю, одним из ведущих мировых исследователей в области молекулярной палеонтологии.

Программная экспериментальная работа, посвященная изучению макромолекул в кости тиранозавра, опубликована в трудах АН США и, как все статьи этого издания, полностью помещена в Интернете (Schweitzer M.H. et al., 1997) [8]. Последнее позволяет углубленно ознакомиться со всеми методическими тонкостями и выводами авторов без посещения специальной библиотеки. Специалисту видна тщательность при выполнении экспериментов, адекватность методов и достоверность полученных результатов.

Хотя нашей задачей не является рассмотрение узких специальных вопросов биохимии и иммунохимии, все же придется разъяснить, что сделано и как. Иначе будет непонятно, да и слишком важна проблема.

Из участка кости с видимыми под микроскопом сосудистыми стенками провели экстракцию белкового материала. Такового было получено, с позиций биохимика-аналитика, ощутимое количество — порядка 1 мг. Фрагменты распавшихся белков (полипептиды и пептиды) явно имели небольшой размер, поскольку, как указывают авторы, они не идентифицировались при электрофорезе в денатурирующих условиях [8]. Последний метод — это стандартный подход при разделении белковых смесей в соответствии с их молекулярной массой, и белки хорошо видны на электрофореграмме (при стандартных условиях опыта), только когда они имеют молекулярную массу не менее 6.000–10.000 "углеродных единиц" (вспомним школьную химию: углеродная единица — это 1/12 от массы обычного нам изотопа углерода 12C). Масса средней аминокислоты (всего их 22) составляет 140 у.е. (от 89 до 240 у.е.; большинство 120–150 у.е.). Следовательно, чтобы белок был хорошо "виден" при электрофорезе, он должен состоять из 40–70 аминокислот. Но в белковом экстракте из кости тиранозавра такие полипептиды не обнаруживались, следовательно, фрагменты оказались меньшими.

Априори было ясно, что основную часть должны составлять фрагменты именно гемоглобина — наиболее "обильного" белка крови (сравним только альбумин) — ведь экстрагировали те участки кости, где локализовались видимые под микроскопом стенки сосудов.

Далее авторы иммунизировали белковым экстрактом крыс. Обычно иммунизируют кроликов или морских свинок (у последних иммунный ответ сильнее, а от кроликов — больше материала), но в данном случае, в связи с малым количеством белкового экстракта, пришлось, наверное, выбрать крыс, которые меньше кроликов и свинок.

Иммуноген (экстракт) вместе с адъювантом Фрейнда (стандартный способ усилить иммунный ответ) вводили двум крысам, и у обеих выработались антитела (последнее указывает, что иммуногенность была достаточно стабильна; значит, фрагменты не являлись совсем уж ничтожными). Хорошо известно, что степень иммуногенности (т.е. способность вызывать выработку антител у животных) очень зависит от размера белковой или пептидной молекулы. Невозможно выработать антитела против фрагмента белка с молекулярной массой менее 1000, т.е. состоящего из порядка 7–8 аминокислот (см., например, [41]).

Однако авторы не просто получили "какой-то" иммунный ответ. Не это было их задачей. Они использовали антисыворотку крови крыс для дальнейших иммунохимических методов определения. Отсюда следует, что уровень антител в сыворотке был достаточно высок (иначе методы бы не сработали), а такое может быть обеспечено, только если фрагменты белка имели молекулярную массу значительно более 1000.

К-во Просмотров: 409
Бесплатно скачать Курсовая работа: Молекулярная палеонтология и эволюционные представления о возрасте ископаемых останков