Курсовая работа: Направленная кристаллизация системы Mo-Zr-C
3.3 Результаты экспериментальных исследований и их обсуждение
Дисперсность микроструктуры подчинялась закономерности λ = А·R-n (R = (14...50)·10-6 м/с, n = 0,4). Металлографические исследования, в том числе стереомикроскопический анализ, проводили на микроскопе МИМ-8М. Рентгеноструктурный анализ (ДРОН-4М) проводили в два этапа: идентификация образцов (качественный анализ) и определение относительного содержания фазы (количественный анализ). Применение метода отражения лучей, позволяющего охватить большую площадь исследуемого образца по сравнению с применяемыми в данной работе методами ПЭМ (электронной дифракции УЭМВ-100 К), дает больший разброс данных, например ориентаций, вызванных наличием субграниц и т.п. Поэтому в ряде случаев использовали комплексные методы анализа.
Определено, что сплав Mo-ZrC представляет собой ограненно-неограненную эвтектическую систему. Зарождение эвтектического зерна инициируется лишь одной базовой фазой внедрения характеризующейся сложной кристаллогеометрией, высокой Sпл и большой склонностью к образованию плоскогранных форм роста (плоские дендриты) (рис.7). В дальнейшем из зародыша вырастает кристаллик фазы внедрения. ZrC имеет гексаэдрический габитус.
Рис.7. Механизм роста пластинчатой эвтектики и пути диффузии компонента А и В
Пространство между отростками зародыша пересыщается вторым компонентом (Mо) (рис.8).
Рис.8. Ветвление базового кристалла
Становится возможным зарождение металлической фазы из соответствующего микроконтакта, затем кооперативного (complete) роста обеих фаз, т.е. происходит рост бикристаллического композита. Следует отметить, что в случае НК базовая фаза внедрения возникает лишь в начальные моменты времени и в дальнейшем растет перпендикулярно ФК. Контролирующими факторами для поддержания плоского ФК являются R и G. Отростки ZrC первыми врастают в жидкость. Его кристаллогеометрия определяет структуру зерна, секторальное строение и морфологические особенности.
Исследовалось влияние двух параметров на структурное формирование: градиент температур (G) и скорость кристаллизации (R). При малых R наблюдается упорядоченная пластинчатая структура, при больших R – стержневая (рис.9).
Рис. 9. Пластинчато-стержневая структура Mo-ZrC
4. ВЫВОДЫ
1. Показано, что в случае высокоградиентной зонной кристаллизации тугоплавких квазиэвтектических систем рост бимонокристаллической композиции происходит с макроскопическим плоским фронтом. Базовая фаза внедрения возникает в начальные моменты времени и в дальнейшим растет перпендикулярно ФК.
2. Определено, что повышение градиента температур (G) на ганице раздела кристалл-жидкость при заданной скорости кристаллизации (R) сужает зону концентрационного переохлаждения, обеспечивая малую зону затвердевания и устраняет ненаправленное ветвление.
3. Выяснена взаимосвязь бимонокристаллической структуры сплавов, наиболее вероятных механизмов ее огрубления при предплавильных температурах.
4. Полученные современные бимонокристаллические материалы обладают структурной стабильностью до 0,9 Тпл, что позволяет использовать их в новых областях науки и техники.
5. Полученные результаты могут быть использованы для выбора режимов механико-термической обработки жаропрочных материалов на основе тугоплавких металлов, что позволит существенно расширить новые области их применения.
5. Список литературы
1. С.А. Фирстов. Проблемы получения предельного упрочнения в материалах // Тр. Международной конференции. "Сучасне матерiалознавство: матерiали та технологiї" СММТ-2008. Киев, 2008, с.45-46.
2. V.M.Azhazha, N.A.Azarenkov, V.E.Semenenko, V.V.Podsolkova. Microstructure and hardness of natural composite // Proc. “Modern materials science: achievement and problems”. September 26-30, Kiev, 2005, p.15-17.
3. R.C.Holden, R.J.Jaffee. Studies of molybdenum, tan-talum, tungsten and chromium-base alloys with im-proved ductility // Battelle Met. Inst. Oxford: Perga-mon Press., 2003, p.1837-1849.
4. A.M.Fillippi. Development and properties of molybdenum base alloys. The metal molybdenum. Ohio:Am. Soc. Metal., 2005, p. 281-329.
5. М.О.Азаренков, В.Є.Семененко, М.М.Пилипенко. Сучасні конструкційні матеріали – композити. Харків: ХНУ, 2004, 75 с.
6. В.М.Ажажа, В.Е.Семененко, Н.Н.Пилипенко. Композиционное покрытие на основе естественного композита Ni-Ni3B // Порошковая металлургия. 2007, т.46, № 1-2(453), с.40-47.
7. Г.Г.Девятых, Г.С.Бурханов. Высокочистые тугоплавкие редкие металлы. М.: Наука, 1993, 223 с.
8. Ю.Н.Таран-Жовнир. Строение эвтектик и создание новых сплавов эвтектического типа // Сучасне матеріалознавство ХХІ сторіччя. Київ: “Наукова думка”, 1998, с.178-180.
9. В.М. Ажажа, Н.А. Азаренков, В.Е. Семененко, А.В. Кузьмин. Особенности получения и свойства естественных композиционных материалов на основе тугоплавких металлов // МФ и НТ. 2008, т.30, №12, с 277-288.
10. С.З. Бокштейн и др. Авторадиографические исследования структуры металлов и сплавов. М.: «Наука», 1989, с. 395