Курсовая работа: Назначение источников бесперебойного питания

Источники бесперебойного питания с режимом работы on-line выпускаются не­скольких типов (по принципам преобразо­вания энергии). Существуют четыре типа on-line ИБП:

· с одиночным преобразованием;

· с дельта-преобразованием;

· феррорезонансные ИБП;

· с двойным преобразованием.

Принцип одиночного преобразования (single conversion) заключается в следующем. В цепь между питающей сетью и нагрузкой включен дроссель, к выходу которого подключен инвертор. Инвертор в данной схеме является реверсивным и способен преобразовывать постоянное напряжение в переменное и наоборот. Поми­мо питания нагрузки в автономном режиме вторым назначением инвертора является регулирование напряжения на стороне нагрузки при отклонениях в питающей сети.

У ИБП данного типа КПД весьма высок и может достигать 96%. Од­нако имеются некоторые недостат­ки, например низкое значение входного коэффициента мощности (cosφ ≈ 0,6), при этом он меняется при изменении как напряжения се­ти, так и характера нагрузки.

Кро­ме того, при малых нагрузках дан­ные ИБП потребляют существен­ные реактивные токи, соизмеримые с номинальным током установки. Среди современных ИБП последних моделей подобный тип не встречается, поскольку на смену ему пришла технология дельта-пре­образования, являющаяся развитием технологиии одиночного преобразования.

Принцип дельта-преобразования (delta conversion) основан на применении в схеме ИБП так называемого дельта-трансформатора. Дельта-трансформа­тор представляет собой дроссель с обмоткой подмагничивания, которая позволяет управлять током в основной обмотке (аналогично принципу магнитного усилите­ля). В ИБП применяются два постоянно работающих инвертора. Один служит для управления дельта-трансформатором и, соответственно, регулировки входного тока и компенсации некоторых помех. Его мощность составляет 20% от мощности вто­рого инвертора, работающего на нагрузку. Второй инвертор, мощность которого определяет мощность ИБП, формирует выходную синусоиду, обеспечивая коррек­цию отклонений формы входного напряжения, а также питает нагрузки от батарей при работе ИБП в автономном режиме. Благодаря такой схеме обеспечивается воз­можность плавной загрузки входной сети при переходе из автономного режима ра­боты от батарей к работе от сети (режим on-line), а также высокая перегрузочная способность - до 200% в течение 1 мин.

При загрузке ИБП данного типа на 100% номинальной мощности коэффици­ент полезного действия составляет 96,5%. Однако высокие показатели данный тип ИБП обеспечивает при следующих условиях: отсутствии отклонений и иска­жений напряжения в питающей сети, нагрузке ИБП, близкой к номинальной и яв­ляющейся линейной. В реальных условиях показатели данного типа ИБП (КПД = 90,8...93,5%) приближаются к показателям ИБП с двойным преобразованием, рассмотренного ниже. Реальное достижение высоких заявленных значений КПД ИБП с дельта-преобразованием возможно при широком внедрении импульсных блоков питания с коррекцией коэффициента мощности. Это означает, что нагруз­ка приобретает преимущественно активный характер и создаются условия для проявления высоких энергетических характеристик ИБП. В последнее время коэффициент мощности новых блоков питания достиг значения 0,92...0,97. Дру­гим достоинством ИБП с дельта-преобразованием является высокий коэффициент мощности самого устройства, близкий к 1. Это облегчает совместную работу ИБП и ДГУ. На основе ИБП с дельта-преобразованием строятся мощные централизо­ванные СБЭ с избыточным резервированием. Естественно, возможны также схе­мы с единичными ИБП. Диапазон мощностей ИБП этого типа 10...480 кВА. Воз­можно параллельное объединение до 8 ИБП для работы на общую нагрузку в од­ной СБЭ. Данный тип ИБП является основной альтернативой типу ИБП с двой­ным преобразованием.[4]

Феррорезонансные ИБП названы так по применяемому в них феррорезонансному трансформатору. В основу принципа его работы положен эффект феррорезонанса, применяемый в широко распространенных стабилизаторах напряжения. При нормальной работе трансформатор выполняет функции стабилизатора напряжения и сетевого фильтра. В случае потери питания феррорезонансный трансформатор обеспечивает нагрузку питанием за счет энергии, накопленной в его магнитной системе. Интервала времени длительностью 8... 16 мс достаточно для запуска ин­вертора, который уже за счет энергии аккумуляторной батареи продолжает поддер­живать нагрузку. Коэффициент полезного действия ИБП данного типа соответству­ет КПД систем двойного преобразования (не превышает 93%). Данный тип источ­ников бесперебойного питания широкого распространения не получил, хотя обес­печивает очень высокий уровень защиты от высоковольтных выбросов и высокий уровень защиты от электромагнитных шумов. Предел мощности ИБП данного типа не превышает 18 кВА.

Наиболее широко распространен тип ИБП двойного преобразования (double conversion UPS), представленный на рисунке.

Зачастую в качестве синонима двойного преобразования употребляют on-line. Это не вполне верно, так как к группе ИБП типа on-line относятся и другие схемы ИБП. В ИБП этого типа вся потребляемая энергия поступает на выпрямитель и преобразуется в энергию постоянного тока, а затем инвертором - в энергию пере­менного тока. Выпрямитель - это полупроводниковый преобразователь. В трех­фазных ИБП средней и большой мощности - это регулируемый преобразователь, выполненный по мостовой 6-импульсной схеме (схеме Ларионова), на основе полу­проводниковых вентилей - тиристоров. Для улучшения энергетиче­ских характеристик выпрямителя (снижения искажений, вносимых в сеть при рабо­те преобразователя) применяют двухмостовые выпрямители, выполненные по 12-импульсной схеме. Выпрямители в такой схеме включены последо­вательно, они подключаются к питающей сети через трехобмоточный трансформа­тор. В современных ИБП выпрямитель непосредственно не работает на подзаряд АБ. Для зарядки АБ в схему ИБП введено специальное зарядное устройство - пре­образователь постоянного тока, оптимизирующее заряд АБ, управляя напряжением на АБ и зарядным током.

Обязательным элементом схемы ИБП большой и средней мощности является байпас (by­pass) - устройство обходного пути. Это устройство предназначено для непосредственной связи входа и выхода ИБП, минуя схему резервирования питания.

Байпас позволяет осуществ­лять следующие функции:

· включение/отключение ИБП при проведении ремонтов и регулировок без от­ключения питания электроприемников;

· перевод нагрузки с инвертора на байпас при возникновении перегрузок и ко­ротких замыканий на выходе источника бесперебойного питания;

· перевод нагрузки с инвертора на байпас при удовлетворительном КЭ в питаю­щей сети с целью снижения потерь электроэнергии в ИБП (econom mode - экономичный режим работы).[5]

Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го) байпаса. Статический байпас представляет собой тиристорный (статический) ключ из встречно-паралельно включенных тиристоров. Управление ключом (вклю­чено/выключено) осуществляется от системы управления ИБП. Оно может произ­водиться как вручную, так и автоматически. Автоматическое управление осуществ­ляется при возникновении перегрузки и в экономичном режиме работы ИБП. При этом в обоих случаях напряжение инвертора синхронизировано с напряжением на входе цепи байпаса и с импульсами управления, что позволяет произвести перевод нагрузки с инвертора на байпас и обратно «без разрыва синусоиды».

Ручной (механический) байпас представляет собой механический выключатель нагрузки, шунтирующий статический байпас. Он предназначен для вывода ИБП из работы со снятием напряжения с элементов ИБП. При включенном ручном байпасе питание нагрузки осуществляется через цепь «вход байпаса-ручной байпас-выход ИБП». Остальные элементы схемы ИБП: выпрямитель, инвертор, АБ, ста­тический байпас - на время включения ручного байпаса могут быть обесточены (отключены от питания и нагрузки) с целью ремонта, регулировок, осмотров и т.д. Об отключении АБ можно говорить с некоторой натяжкой, ибо, будучи в заряжен­ном состоянии, АБ является мощным источником постоянного напряжения, пред­ставляющим опасность для обслуживающего персонала. По классификации «Меж­отраслевых правил по охране труда (правила безопасности) при эксплуатации элек­троустановок» работы с АБ следует относить к виду работ с частичным снятием на­пряжения. При необходимости замены аккумуляторов АБ ИБП переводят на руч­ной байпас, специальным инструментом разъединяют АБ на отдельные аккумуля­торы, после чего опасность поражения электрическим током устраняется.

При работе на байпасе, как статическом, так и ручном, ИБП не имеет возможно­сти обеспечивать бесперебойное питание потребителей. Такие режимы должны сопровождаться административно-техническими мероприятиями для исключения нежелательных последствий для потребителей при отключении питания при работе на байпасе. Самая простая мера - проведение профилактических и ремонтных ра­бот в нерабочее время потребителей.

Инвертор, управляемый микропроцессором, выраба­тывает синусоидальное на­пряжение, поступающее на нагрузку. В мощных трехфаз­ных ИБП инвертор также вы­полнен по трехфазной мосто­вой схеме. Для по­строения синусоиды в инвер­торе реализован принцип широтно-импульсной модуля­ции (ШИМ).

Принцип его действия состоит в подаче импульсов переменной скважности че­рез тиристоры на трансформатор, выполняющий одновременно роль фильтра, или непосредственно на LC-фильтр на выходе инвертора. В результате формируется синусоидальное напряжение с низким коэф­фициентом гармонических искажений: КU < 3%. [6]

В современных ИБП двойного преобразования применяют схему зеркального преобразования. На рисунке изображены выпрямитель и инвертор ИБП, выполнен­ные по схеме зеркального преобразования. В основу схемы положено применение мощных IGBT-транзисторов (Insulated Gate Bipolar Transistor - полевой биполяр­ный транзистор с изолированным затвором). Смысл термина «зеркальное преобра­зование» состоит в том, что процессы выпрямления и инвертирования электроэнер­гии реализованы на одинаково выполненных преобразователях. Преимущества применения зеркального преобразования заключаются в обеспечении:

· отсутствия нелинейных искажений входного тока без дополнительных фильт­ров;

· коэффициента мощности ИБП, близкого к единице;

· реализации принципа ШИМ без выходного трансформатора и фильтра.

Это позволяет оптимизировать совместную работу ИБП с ДГУ, снизить массо-габаритные показатели. Недостатком зеркального преобразования является более низкий КПД (на 1...1,5%), чем у ИБП двойного преобразования с тиристорными преобразователями. Это ограничивает область применения ИБП с зеркальным пре­образованием мощностью до 30...40 кВА. В мощных трехфазных ИБП двойного преобразования часто применяют комбинированные схемы преобразователей - тиристорный выпрямитель и инвертор на ЮВТ-транзисторах.

Технология двойного преобразования отработана и успешно используется свы­ше двадцати лет, однако ей присущи принципиальные недостатки:

К-во Просмотров: 623
Бесплатно скачать Курсовая работа: Назначение источников бесперебойного питания