Курсовая работа: Непрерывные генетические алгоритмы
где N – количество разрядов для кодирования битовой строки.
Эта формула показывает, что p сильно зависит от N, т.е. точность представления определяется количеством разрядов, используемых для кодирования одной хромосомы. Поэтому при увеличении N пространство поиска расширяется и становится огромным.
Известный книжный пример: пусть для 100 переменных, изменяющихся в интервале , требуется найти экстремум с точностью до шестого знака после запятой. В этом случае при использовании генетических алгоритмов с двоичным кодированием длина строки составит 3000 элементов, а пространство поиска – около хромосом.
Эффективность генетических алгоритмов с двоичным кодированием в этом случае будет невысокой. На первых итерациях алгоритм потратит много усилий на оценку младших разрядов числа, закодированных во фрагменте двоичной хромосомы. Но оптимальное значение на первых итерациях будет зависеть от старших разрядов числа. Следовательно, пока в процессе эволюции алгоритм не выйдет на значение старшего разряда в окрестности оптимума, операции с младшими разрядами окажутся бесполезными. С другой стороны, когда это произойдет, станут не нужны операции со старшими разрядами – необходимо улучшать точность решения поиском в младших разрядах. Такое «идеальное» поведение не обеспечивает семейство генетических алгоритмов с двоичным кодированием, т.к. эти алгоритмы оперируют битовой строкой целиком, и на первых же эпохах младшие разряды чисел "застывают", принимая случайное значение. В классических генетических алгоритмах разработаны специальные приемы по выходу из этой ситуации. Например, последовательный запуск ансамбля генетических алгоритмов с постепенным сужением пространства поиска.
Есть и другая проблема: при увеличении длины битовой строки необходимо увеличивать и численность популяции.
Математический аппарат непрерывных генетических алгоритмов
Как уже отмечалось, при работе с оптимизационными задачами в непрерывных пространствах вполне естественно представлять гены напрямую вещественными числами. В этом случае хромосома есть вектор вещественных чисел. Их точность будет определяться исключительно разрядной сеткой той ЭВМ, на которой реализуется real-coded алгоритм. Длина хромосомы будет совпадать с длиной вектора-решения оптимизационной задачи, иначе говоря, каждый ген будет отвечать за одну переменную. Генотип объекта становится идентичным его фенотипу.
Вышесказанное определяет список основных преимуществ алгоритмов с непрерывными генами:
Использование непрерывных генов делает возможным поиск в больших пространствах (даже в неизвестных), что трудно делать в случае двоичных генов, когда увеличение пространства поиска сокращает точность решения при неизменной длине хромосомы.
Одной из важных черт непрерывных генетических алгоритмов является их способность к локальной настройке решений.
Использование непрерывных генетических алгоритмов для представления решений удобно, поскольку близко к постановке большинства прикладных задач. Кроме того, отсутствие операций кодирования/декодирования, которые необходимы в генетических алгоритмах с двоичным кодированием, повышает скорость работы алгоритма.
Как известно, появление новых особей в популяции канонического генетического алгоритма обеспечивают несколько биологических операторов: отбор, скрещивание и мутация. В качестве операторов отбора особей в родительскую пару здесь подходят любые известные из двоичных генетических алгоритмов: рулетка, турнирный, случайный. Однако операторы скрещивания и мутации не годятся: в классических реализациях они работают с битовыми строками. Нужны собственные реализации, учитывающие специфику real-coded алгоритмов.
Оператор скрещивания непрерывного генетического алгоритма, или кроссовер, порождает одного или нескольких потомков от двух хромосом. Собственно говоря, требуется из двух векторов вещественных чисел получить новые векторы по каким-либо законам. Большинство real-coded алгоритмов генерируют новые векторы в окрестности родительских пар. Для начала рассмотрим простые и популярные кроссоверы.
Пусть и – две хромосомы, выбранные оператором селекции для скрещивания. После формулы для некоторых кроссоверов приводится рисунок – геометрическая интерпретация его работы. Предполагается, что и .
Плоский кроссовер (flat crossover): создается потомок – случайное число из интервала .
Простейший кроссовер (simple crossover): случайным образом выбирается число k из интервала и генерируются два потомка и .
Арифметический кроссовер (arithmetical crossover): создаются два потомка , , где , , , w либо константа (равномерный арифметический кроссовер) из интервала , либо изменяется с увеличением эпох (неравномерный арифметический кроссовер).
Геометрический кроссовер (geometrical crossover): создаются два потомка , , где , , w – случайное число из интервала .
Смешанный кроссовер (blend, BLX-alpha crossover): генерируется один потомок , где – случайное число из интервала , , , . BLX-0.0 кроссовер превращается в плоский.
Линейный кроссовер (linear crossover): создаются три потомка , , где , , . На этапе селекции в этом кроссовере отбираются два наиболее сильных потомка.
Дискретный кроссовер (discrete crossover): каждый ген выбирается случайно по равномерному закону из конечного множества .
Расширенный линейчатый кроссовер (extended line crossover): ген , w – случайное число из интервала .
Эвристический кроссовер (Wright’s heuristic crossover). Пусть – один из двух родителей с лучшей приспособленностью. Тогда , w – случайное число из интервала .