Курсовая работа: Неразрушающий контроль. Акустическая дефектоскопия
Генератор синхронизирующих импульсов обеспечивает синхронизацию работы узлов дефектоскопа, реализуя импульсный режим излучения — приема УЗ-колебаний. При ручном контроле этот генератор работает в режиме самовозбуждения; при использовании дефектоскопа в многоканальной аппаратуре механизированного и автоматизированного контроля его переключают в режим внешнего запуска. Независимо от режима генератор вырабатывает импульсы, используемые для пуска генератора радиоимпульсов, генератора напряжения развертки, блока цифровой обработки, схемы временной селекции автоматического сигнализатора дефектов.
Генератор радиоимпульсов предназначен для формирования высокочастотных электрических импульсов, используемых для возбуждения УЗ-колебаний в преобразователе. До последнего времени наиболее часто применяли схемы генераторов радиоимпульсов с контуром ударного возбуждения. В дефектоскопах, созданных недавно, чаще используют схемы, позволяющие получать радиоимпульсы с колоколообразной огибающей, характеризующиеся большим КПД и наиболее узким спектром при заданной длительности.
Высокочастотные электрические колебания пьезопластиной преобразователя трансформируются в механические, которые при наличии акустического контакта вводятся в контролируемый объект. Дойдя до границы с какой-либо инородной средой (дефектом), эти колебания частично отражаются, регистрируются и преобразуются в приемном преобразователе в электрические импульсы, поступающие на вход приемно-усилительного тракта дефектоскопа.
Приемно-усилительный тракт дефектоскопа предназначен для усиления и детектирования сигналов, регистрируемых приемным преобразователем. Тракт содержит, как правило, следующие элементы: двусторонний диодный ограничитель, ограничивающий амплитуду зондирующего импульса на входе усилителя; калиброванный делитель напряжения — измерительный аттенюатор; усилитель высокой частоты; детектор; видеоусилитель; формирователь управляющего напряжения временной регулировки чувствительности. Измерительный аттенюатор позволяет оператору сравнивать уровни эхо-сигналов от различных отражателей.
В УЗ-дефектоскопах измерительные аттенюаторы выполняют, как правило, путем цепочечного соединения звеньев на резисторах с изменением вносимого затухания путем переключения звеньев. Общее затухание, установленное на аттенюаторе, равно сумме затуханий, определяемых положением ручек аттенюатора. Точность аттенюатора характеризуют пределом допускаемой абсолютной погрешности измерения отношения амплитуд сигналов на входе приемника, которая в современных дефектоскопах не превышает 1 ... 2 дБ.
Видеоусилители современных дефектоскопов включают в себя схему регулируемой отсечки, обеспечивающую передачу сигналов, превышающих заданный уровень, называемый уровнем подавления, без искажений.
Формирователь управляющего напряжения автоматической временной регулировки чувствительности (ВРЧ) предназначен для выработки напряжения, управляющего во времени коэффициентом усиления приемного тракта дефектоскопа. Применение системы ВРЧ позволяет уменьшить время восстановления усилителя после перегрузки его зондирующим импульсом. Кроме того, система ВРЧ позволяет компенсировать ослабление УЗ-колебаний в контролируемом изделии, обусловленное дифракционным расхождением и затуханием ультразвука. В некоторых дефектоскопах форму управляющего напряжения ВРЧ можно наблюдать на экране электронно-лучевой трубки.
В большинстве эхо-импульсных дефектоскопов в качестве индикаторов используют электронно-лучевые трубки электростатическим отклонением луча в виде индикаторов типа А. На экране такого индикатора воспроизводится в масштабе процесс распространения УЗ-колебаний в контролируемом объекте. Длительность развертки регулируется в зависимости от скорости распространения УЗ-колебаний в материале объекта и толщины контролируемого слоя. Для формирования изображения на горизонтально отклоняющие пластины подается пилообразное напряжение, вырабатываемое генератором напряжения развертки.
Напряжение видеосигналов подается с выхода приемно-усилительного тракта на вертикально отклоняющие пластины, в результате чего на линии развертки появляются импульсы, положение которых позволяет судить о расстоянии до отражающей поверхности. При большой толщине изделия масштаб изображения на экране электронно-лучевой трубки может оказаться слишком мелким, что не позволяет наблюдать эхо-сигналы от близко расположенных отражателей. Для устранения этого недостатка в современных дефектоскопах предусмотрена плавная регулировка длительности развертки. Кроме того, для этой же цели вводят режим пуска генератора напряжения развертки с задержкой, которую можно плавно регулировать. Это позволяет наблюдать процесс распространения УЗ-колебаний в любом слое контролируемого изделия в достаточно крупном масштабе и в сочетании со схемой автоматического сигнализатора дефектов реализовать принцип контроля по слоям.
Цифровой индикатор предназначен для измерения координат выявленных дефектов, а также для измерения длительности и задержки развертки, временных параметров автоматического сигнализатора дефектов и системы ВРЧ. Координаты h и L расположения отражателя вычисляют по известным значениям времени t распространения УЗ-колебаний в контролируемом объекте до отражателя и обратно, а также угла ввода α:
где— коэффициенты, учитывающие скорость и угол ввода луча α поперечной волны.
Преобразование длительности неизвестного временного интервала в цифровой код осуществляют путем заполнения этого интервала тактовыми импульсами специального генератора, следующими с фиксированной частотой, и счета числа этих импульсов. Результат отображается на цифровом индикаторе с учетом масштабного коэффициента, зависящего от частоты следования тактовых импульсов. При определении координат дефектов значения коэффициентов учитываются с помощью подстроечных элементов подбором частоты следования импульсов тактового генератора.
Автоматический сигнализатор дефектов управляет дополнительными индикаторами. В этом блоке осуществляется временная селекция сигналов, поступающих на его вход с выхода усилительного тракта. Временная селекция эхо-сигналов необходима для того, чтобы на дополнительные индикаторы дефектоскопа не поступал зондирующий импульс, а также эхо-сигналы от несплошностей, расположенных вне контролируемого слоя. Принцип временной селекции состоит в том, что на выход селектора (каскада совпадений) приходят только те сигналы, которые совпадают по времени со специально сформированным селектирующим (стробирующим) импульсом, временное положение которого соответствует распространению УЗ-колебаний в заданном слое. Длительность t этого импульса определяет толщину контролируемого слоя H, а интервал времени Т между моментом излучения зондирующего импульса и моментом начала стробирующего импульса — глубину h расположения ближней границы контролируемого слоя.
Величины Н, t, h и T связаны между собой соотношениями
где — время прохождения упругой волны через призму (протектор) преобразователя.
Для измерения интервала времени Т при определении координат отражателя обычно используют метод максимума, предусматривающий установку преобразователей в положение, соответствующее максимальной амплитуде отраженного сигнала. Как правило, максимум амплитуды отраженного сигнала определяют по экрану трубки.
Использование в дефектоскопах микропроцессорной техники существенно повышает достоверность и надежность результатов УЗ-контроля. В дефектоскопах 3-й группы она позволяет измерять эквивалентную площадь и линейные условные размеры выявленных дефектов, осуществлять настройку параметров дефектоскопа по предварительно введенным в него программам, а в дефектоскопах 4-й группы — вести обработку информации в процессе сканирования и идентифицировать дефекты по видам с учетом их потенциальной опасности, отображая результаты обработки на документе контроля (ультразвукограмме).
Независимо от средств, используемых при сканировании (вручную, механизированно), надежность результатов дефектоскопирования обусловливается системой слежения за качеством акустического контакта и степенью объективности и информативности документа контроля.
Импульсные УЗД, работающие по методу отражений, являются основными средствами акустического контроля в различных отраслях промышленности.
2.4 УЗД с непрерывным излучением
ультразвуковая дефектоскопия частота излучение
При значительных скоростях взаимного перемещения преобразователя и контролируемого объекта от дефекта поступает серия эхо-сигналов (пачка), число импульсов в которой резко уменьшается с возрастанием скорости сканирования. При этом в ряде случаев существенно снижается помехозащищенность контроля.
При больших скоростях сканирования перспективным, сточки зрения помехозащищенности, может оказаться эхо-метод ультразвуковой дефектоскопии, основанный на непрерывном излучении упругих колебаний наклонным преобразователем с выделением допплеровского сдвига частоты в эхо-сигнале от дефекта. Метод может быть реализован в широком диапазоне скоростей сканирования, охватывающем как ручной контроль, так и контроль посредством высокоскоростных автоматизированных систем, например вагонов-дефектоскопов для контроля рельсов.
В дефектоскопах, работающих по данному методу, признаком обнаружения дефекта является прием эхо-сигналов с допплеровским сдвигом частоты. При этом на выходе дефектоскопа формируется радиоимпульс длительностью τ с низкой частотой заполнения, равной разности частот принятых и излученных колебаний:
где — скорость перемещения преобразователя по контролируемому объекту; с — скорость распространения УЗ-колебаний в объекте; α — угол, под которым озвучивается дефект; ΔХ — условная ширина выявляемого дефекта.