Курсовая работа: Нестандартные задачи по математике
Нередко встречаются задачи, в которых спрашивается, можно ли в результате некоторых действий получить тот или иной результат. Основным методом решения подобных задач является нахождение свойства исходного объекта, которое не меняется после выполнения таких действий, - это и есть инвариант. Если конечный объект задачи не обладает найденным свойством, то он, очевидно, не может быть получен в результате этих действий из исходного объекта.
Полуинвариант - величина, изменяющаяся только в одну сторону (т.е. которая может только увеличиваться или только уменьшаться). Понятие полуинварианта часто используется при доказательствах остановки процессов.
1. Имеется квадратная таблица 10х10, в клетки которой в последовательном порядке вписаны натуральные числа от 1 до 100: в первую строку - числа от 1 до 10, во вторую - от 11 до 20 и т. д. Докажите, что сумма Sлюбых 10 чисел таблицы, из которых никакие два не стоят в одной строке и никакие два не стоят в одном столбце, постоянна. Найдите эту сумму.
Решение.
Обозначим слагаемое исходной суммы S из первой строки через а1 , из второй - через 10 + а2, из третьей – через 20 + а3 и т. д., наконец, из десятой – через 90 + а10.
Здесь каждое из натуральных чисел а1, а2, …,а10 заключено в пределах от 1 до 10 , причем эти числа попарно различны, так как, если бы, например, а1 = а2 , то числа а1 и 10 + а2 стояли бы в одном столбце таблицы. Получаем:
S = а1 + ( 10 + а2 ) +( 20 + а3 ) + …+ ( 90 +а10 ) =
= ( 10 + 20 +…+ 90 ) + ( а1 + а2 +…+ а10 ) =
= 450 + (а1 + а2 +…+ а10 ).
Поскольку числа а1, а2,…, а10 попарно различны и принимают все целые значения от 1 до 10 , то каждое из натуральных чисел от 1 до 10 входит в сумму а1 + а2 +…+ а10 в качестве слагаемого ровно один раз. Следовательно,
а1 + а2 +…+ а10 = 1 + 2 +3 +… + 10 = 55,
S = 450 + 55 = 505.
Сумма S и является инвариантом : если в ней одни слагаемые заменить другими, но так, чтобы все слагаемые новой суммы стояли в таблице в разных строках и в разных столбцах, сумма примет, тоже самое значение.
Ответ : 505.
2. На каждой клетке шахматной доски 8х8 написали произ-ведение номера строки, в которой расположена клетка, на номер ее столбца. Выбрали 8 клеток, из которых никакие две не стоят в одной строке и никакие две не стоят в одном столбце. Докажите, что произведение чисел, написанных в этих клетках, постоянно, и вычислите его .
3. Лист бумаги разорвали на 5 кусков, некоторые из этих кусков разорвали на 5 частей, а некоторые из этих новых частей разорвали еще на 5 частей и т. д. Можно ли таким путем получить 1994 куска бумаги ? А 1997 ?
Решение.
При каждом разрывании листа или одного куска бумаги на 5 частей общее число кусков увеличивается на 4 . Поэтому число кусков бумаги на каждом шаге может иметь только вид 4k + 1 (k-
натуральное число ). Это выражение и является инвариантом.
Так как 1994 нельзя представить в виде 4k + 1 , то число кусков, равное 1994 , получиться не может, а 1997 = 4k + 1 при k = = 499 ,следовательно, 1997 кусков получиться могут.
4. Имеется два листа картона. Каждый из них разрезали на 4 куска, некоторые из этих кусков разрезали еще на 4 куска и т. д. Можно ли таким путем получить 50 кусков картона? А 60 ?
5. Каждое натуральное число от 1 до 50000 заменяют числом равным сумме его цифр. С получившимися цифрами проделывают ту же операцию, и так поступают до тех пор, пока все числа не станут однозначными. Сколько раз среди этих однозначных чисел встретится каждое из целых чисел от 0 до 8?
Решение.
Указанные однозначные числа в последовательном порядке таковы : 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2,3, 4, 5, 6, 7, 8, 0,… .
Эта закономерность сохраняется и дальше. В самом деле, при замене натурального числа суммой его цифр остаток от деления числа на 9 остается неизменным, поэтому при переходе от каждого натурального числа к следующему остаток от деления числа на 9 увеличивается на 1 или перескакивает от 8 к 0. Для того чтобы узнать, сколько таких групп цифр по 9 цифр в каждой, разделим 50000 на 9 с остатком : 50000 = 9 5555 + 5.
Следовательно, таких групп 5555 . Еще одну, неполную группу образуют последние 5 цифр : 1, 2, 3, 4, 5.
Ответ : 1, 2, 3, 4, 5 – по 5556 раз , 6, 7, 8, 0 – 5555 раз .
6. На доске написаны числа 1, 2, 3, …, 125 . Разрешается стереть любые два числа и написать вместо них остаток от деления суммы этих чисел на 11 . После 124 таких операций на доске осталось одно число. Какое это число?
7. Первый член последовательности равен 1 , а каждый следующий, начиная со второго, получается прибавлением к предыдущему члену суммы его цифр. Может ли в этой последовательности встретиться число 765432?
--> ЧИТАТЬ ПОЛНОСТЬЮ <--