Курсовая работа: О побочном событии в лабораторном эксперименте
Но "прорывы" появляются только в ослабленных зонах.
Где тонко - там и рвется.
Настойчиво расковыривая ядро, можно проковырять его до "дырки". Тогда и случится такой "прорыв", какого не ожидает Примаков.
Опасность вероятного "прорыва" заключается не в самом атоме (ведь он такой маленький!), а в том огромном и могущественном, что за ним скрывается.
Другая сенсация последних двух лет - синтез элементов №114 и 116 в Дубне, также указывает на превосходство лабораторного эксперимента над всем, что умеют делать звезды, даже сверхновые. Известно также о синтезе в Беркли последнего элемента таблицы Менделеева - №118, однако авторам эксперимента пока не удается воспроизвести результат повторно.
Происхождение ядер сверхтяжелых элементов до сего дня объясняется взрывами сверхновых звезд, при этом началом и причиной процесса считается коллапс звезды, а следствием и результатом - взрыв и синтез. Так, на 11-й вопрос американских физиков "Как возникли химические элементы тяжелее железа (уран и пр.)?" В. Липунов ответил следующее:
"Ответ более менее известен - тяжелые элементы возникли при вспышках сверхновых звезд, когда гравитационная энергия коллапсирующего звездного ядра идет на образование тяжелых атомных ядер. Неясны детали. Проблема не фундаментальная (выделено мною - Г.В.) и вполне может быть решена в 21 веке".
Однако позволим себе согласиться с американскими физиками в том, что проблема эта не только фундаментальная вообще, но и критически важная для конкретного, - современного этапа развития земной цивилизации. Если выяснение деталей можно отложить на конец 21-го века, то "более-менее известные" ответы на вопросы принципиальной важности не являются той платформой, на которой может базироваться экспериментальное моделирование космических процессов и событий. Переносить с небес на землю фрагменты грандиозных и малоизученных процессов по меньшей мере неразумно, хотя можно было бы назвать это и преступлением, если бы существовал закон об охране планет земной группы.
Уязвимость этой теории допускает иное толкование: первопричиной был синтез сверхтяжелого ядра, а затем последовал его коллапс, аккреция вещества звезды на зародыш черной дыры и сброс внешней оболочки.
Предполагаемая связь между синтезом тяжелых элементов на Земле и звездах, т.е. вероятность прямой аналогии между вспышками сверхновых и лабораторными экспериментами имеет принципиальное значение, поэтому необходима предварительная оценка существующей (общепризнанной) теории, восходящей своими истоками ко временам Канта и Лапласа:
1) Если бы теория синтеза тяжелых элементов за счет вспышек сверхновых была верна, то свет не путешествовал бы по непрозрачной Вселенной на протяжении полутора десятков миллиардов лет, и мы не подозревали бы о существовании звездного неба, находясь в кромешной мгле. Продукты распада множества сверхновых сделали бы Вселенную непрозрачной и мы не видели бы космических лучей, реликтового излучения, квазаров и других объектов, рожденных в первый день сотворения мира. Свет удаленных галактик первого поколения был бы поглощен и закрыт пылью звезд, взорвавшихся позднее и ближе к земному наблюдателю.
2) Теория вспышек сверхновых объясняет прозрачность Вселенной тем, что в наше время сверхновые взрываются не так часто, как это было 10-15 млрд. лет назад, поэтому небосвод не задымляется продуктами взрывов. Согласно этой теории, более часто взрывались звезды первых двух поколений, которые синтезировали тяжелые элементы, необходимые для формирования звезд третьего поколения. Если бы эта теория была верна, то звезды третьего поколения не появились бы вообще.
Дело в том, что по теории, взрыву сверхновой всегда сопутствует коллапс её ядра с образованием черной дыры. Если бы это было так, то число черных дыр во Вселенной было бы в 3 раза больше, чем число наблюдаемых ныне обычных звезд, и дыры, как более древние, должны были аккрецировать на себя тяжелое вещество взорвавшихся звезд и не допустить его конденсации в протопланетные облака для последующего формирования звезд третьего поколения. А если где-нибудь на задворках Вселенной успела бы сформироваться одна нормальная звезда, то вместо планет близ этой звезды кружила бы стая хищных черных дыр, готовых поглотить её при первом удобном случае.
Во всяком случае, если доверять теории, при каждой звезде 3-го поколения должен присутствовать остаток материнской сверхновой - черная дыра (одна или две).
3) Наблюдательная астрономия не видит прямой связи между взрывами сверхновых и образованием звезд и планет. Напротив, продукты взрыва новой или сверхновой быстро рассеиваются в межзвездном пространстве без следа и никакой склонности к образованию звезд и планет они не обнаруживают.
4) Не выдерживает эта теория и простейшего расчета баланса массы:
- какое число сверхновых нужно взорвать в одном месте, чтобы из пыли и дыма ударной волны можно было бы наскрести вещество для строительства хотя бы одного такого карлика, как Солнце, не говоря уже о голубых гигантах типа Бетельгейзе?
- какая доля массы Вселенной содержится в звездах третьего поколения, если при взрывах сверхновых звезд предшествующих поколений почти вся её масса ушла в скрытое состояние черных дыр?
- какая доля массы Вселенной осталась в атомарном или молекулярном состоянии, если к нашему приходу она оказалась очищенной до полной прозрачности от пыли и дыма двукратно взорвавшихся звезд?
- кто выполнил эту работу по очистке Вселенной от остатков новых и сверхновых звезд, и каковы его дальнейшие планы?
5) Можно допустить, что первое поколение звезд взорвалось одномоментно в локальной области ядра Галактики, где новообразованные черные дыры немедленно слились в предполагаемую (или уже наблюдаемую?) мегадыру, а общая ударная волна оторвалась от опасного соседства с черными дырами и унесла тяжелые элементы на периферию Галактики для спокойного донашивания и рождения звезд второго и третьего поколений. Такое предположение легко обосновывается расчетами динамики процесса в том смысле, что разнонаправленные моменты движения отдельных тел при их слиянии взаимно уравновешиваются, и общая масса будет оставаться в покое. Однако происхождение тяжелых элементов по такой версии должно объясняться и называться по-другому: не разновременными взрывами сверхновых звезд различных поколений, а одномоментным рождением Галактики.
Эта идея может оказаться продуктивной и при объяснении грандиозных процессов, происходящих в области ядра, где одновременно наблюдается поглощение материи черной дырой и рождение новых звезд.
Кроме того, нахождение Солнца на периферии Галактики, т.е. в передовом фронте этой ударной волны, непринужденно объясняет отсутствие контактов с внеземными цивилизациями, которые зародились позже - в тылу ударной волны и поэтому еще не дозрели для контактов.
6) Неубедительность теории вспышек сверхновых можно усмотреть также в том, что в ней отсутствуют прямые причинно-следственные связи между синтезом ядер сверхтяжелых элементов и образованием черной дыры: черная дыра образуется в недрах звезды сама по себе - в результате внешнего давления, а тяжелые ядра синтезируются сами по себе - в оболочке звезды в момент её разлета. При таком понимании процесса первичным считается коллапс ядра звезды, а следствием - взрыв, который питает своей энергией синтез сверхтяжелых элементов в улетающей взрывной волне. По теории, механика процесса применима и обязательна для всех тех звезд, у которых масса в 2,5-3 раза превышает массу Солнца.
Если рассматриваемая теория верна, то на долю черных дыр - конечного продукта эволюции всех звезд тяжелее Солнца, приходится не менее 90% всей массы Вселенной, и поэтому она должна сжиматься, но не расширяться.
Таким образом, современная теория происхождения тяжелых химических элементов слишком сложна и противоестественна, чтобы быть правдоподобной. Рассказы о происхождении Солнца и планет земной группы за счет конденсации материала взорванных звезд удовлетворяют только очень доверчивых слушателей.
К тому же эта теория крайне опасна. - Она пренебрежительно относится к результатам деятельности мириадов звезд, якобы неспособных создать ничего тяжелее железа, и рекламирует то, чего нет. Она рекламирует экстремальные состояния вспышек сверхновых и понуждает земных экспериментаторов к моделированию таких состояний в надежде на рентабельное получение более тяжелых благородных металлов.
Судя по высказываниям уважаемых членов РАН (прилагаются), эта теория не удовлетворяет и самих астрофизиков, поэтому выдвигается идея возникновения сверхтяжелых элементов за счет распада осколков нейтронных звезд, например: С. С. Герштейн, член корреспондент РАН: " …в результате взрыва сверхновых звезд, когда есть нейтронные потоки, получить трансурановые элементы или элементы актинидной группы довольно трудно. Потому что в этих быстрых процессах потоки нейтронов недостаточны. Однако, уже давно, был указан и другой способ получения, в природе нужного количества этих элементов. Это извержение из нейтронных звезд. …Это гипотеза старая, она принадлежит Майеру и Теллеру. По-моему, Виталий Лазаревич (Гинзбург, прим. ред.) также высказывал эти идеи. …Сравнительно недавно были получены оценки, что столкновение нейтронных звезд сравнительно частое событие (если они друг друга найдут - Г.В.). С помощью столкновения нейтронных звезд пытались объяснить (правда, это не всегда проходит) гамма-всплески большой мощности и др. …очень интересно было бы поискать эти тяжелые элементы" (только не в ускорителях! - Г.В.).
В качестве альтернативы путаным и опасным версиям можно предположить, что если уж в звезде начались какие-то процессы синтеза тяжелых элементов, то они идут до конца, а в этом конце среди множества новообразованных сверхтяжелых ядер найдется хотя бы одно такое, какое окажется способным вызвать коллапс всей звезды подобно взрывателю авиабомбы или артиллерийского снаряда. Во всяком случае, появление случайного "детонатора" в недрах звезды объясняется проще, чем дефицит материи во Вселенной.