Курсовая работа: О синтаксической связности
p \/ p. --->. p ..........................(A)
s s
s----s ---- s.
ss ss
Сейчас члены этого выражения упорядочим согласно следующему принципу. Сначала напишем главный функтор всего выражения, затем последовательно первый, потом второй (возможно третий, четвертый и т.д.) аргумент. Тогда получим:
---->, p\/p, p ............................(B)
s s
----- s---s s .
ss ss
Если какой-то входящий в эту последовательность член все еще остается составным выражением главного функтора и его аргументов, то этот член мы раскладываем на члены ближайшего высшего ряда и упорядочиваем их по тому же принципу, записывая сначала его главный функтор, затем первый, второй и т.д. аргументы этого функтора.
Для нашего примера мы получим:
---->, \/, p, p, p ..........................(C)
s s
---- ---- s s s .
ss ss
Если бы в этой последовательности нашелся еще один составленный из нескольких выражений член, то мы разложили бы его по тому же принципу и продолжали бы так поступать до тех пор, покаместь не получили бы в этой последовательности такие части, которые были бы только простыми выражениями. Последовательность простых выражений, входящих в состав данного составного выражения, упорядоченного выше описанным способом, мы называем ХАРАКТЕРНОЙ [eigentliche] ПОСЛЕДОВАТЕЛЬНОСТЬЮ выражений , входящих в состав этого выражения. Для нашего примера характерная последовательность выражений оказалась достигнутой уже на втором шаге, т.е. (С) является характерной последовательностью выражений для выражения (А). Если сейчас от выражений, упорядоченных свойственной выражению (А) последовательностью, мы оторвем их индексы и выпишем их в той же очередности, то получим т.н. ХАРАКТЕРНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ ИНДЕКСОВ для выражения (А).
Итак, характерная последовательность индексов выражения (А) имеет следующий вид:
s s
----- ----s s s . .........................(1)
ss ss
Сейчас, идя слева направо, посмотрим, найдем ли мы в этой последовательности индексов такое сомкнутое сочетание индексов, которое на первом месте имеет индекс в виде дроби, после которого непосредственно следуют такие индексы, которые входят в знаменатель этого дробного индекса. Если мы найдем одно или несколько таких сочетаний, то вычеркиваем первое из них (идя слева направо) в последовательности индексов и заменяем числителем дробного индекса. Полученную таким образом новую последовательность индексов назовем первой производной характерной последовательности индексов данного выражения (А). Для нашего примера она имеет вид:
s
---- s s . ............................. (2)
ss
Первая производная - это дробный индекс, после которого непосредственно следует такое же сочетание индексов как то, которое образует знаменатель этого дробного индекса. Мы можем приведенным выше способом ее преобразовать, образуя вторую производную, которая имеет вид простого индекса
s ....................................(3)
и которую, поскольку она не ведет к новым производным, назовем последней производной характерной последовательности индексов выражения (А).
Последнюю производную характерной последовательности индексов данного выражения назовем ПОКАЗАТЕЛЕМ ЭТОГО ВЫРАЖЕНИЯ.
Определим еще показатель сформулированного в естественном языке предложения на стр.???. Его характерная последовательность индексов и его очередные производные представляются следующим образом: