Курсовая работа: Обеспечение экологической безопасности путем разработки малоотходного способа реутилизации сернокислых отходов аккумуляторных батарей

1. упрощение подготовки сырья ( исключаются размол, сушка ); приготовление пульпы позволяет подать в обжиговую печь со стабильными физико-химическими свойствами, что не требует постоянного вмешательства в работу обжиговых печей; улучшаются санитарно-гигиенические условия труда, так как уменьшается запыленность подготовительного отделения;

2. применение для приготовления пульпы в качестве связующего раствора сернокислого алюминия позволяет получить гранулы с большой прочностью. Это уменьшает пылеунос в процессе грануляционного спекания из аппаратов кипящего слоя, позволяет осуществить процесс в барабанном противоточном аппарате непрерывного действия;

3. грануляция и обжиг в аппаратах кипящего слоя позволяют одновременно с выгрузкой осуществить сепарацию гранул, таким образом, направлять на экстракцию материал постоянного гранулометрического состава;

4. сернокислая экстракция в барабанном аппарате непрерывного действия совмещена с промывкой и отделением кремнеземистого шлама — сиштофа. Непрерывная подача реагентов и малая длительность процесса позволяют достичь относительно высокой степени извлечения оксида алюминия в раствор ( более 80%);

5. осуществление обезвоживания и грануляции концентрированных растворов сернокислого алюминия в аппарате кипящего слоя позволяет получать частично обезвоженный гранулированный неслеживающийся продукт с высоким содержанием основного компонента —AL2 (SO4)3 (22-26%);

6. значительное сокращение производственной площади;

7. весь процесс непрерывен и может быть автоматизирован.

К числу недочетов следует отнести необходимость упаривания воды каолинивой пульпы, что сопряжено с повышенными тепловыми затратами. Однако осуществить грануляцию и даже пластификацию каолинов невозможно. Применяя печи кипящего слоя удается значительно сократить расход тепла по сравнению с кольцевыми печами.

Интересными представляются направления совершенствования технологии переработки каолинов технической серной кислоты отходами производстваю Так, предлагается использовать отработанные тревильные растворы после окисления Fe2+ в Fe3+ продувкой воздухом направляют на втоклавное разложение при температуре 100-300 С и давлении 7-350 атм. В результате реакции обмена получают в растворе сульфат алюминия и в осадке — Fe(OH)3 и SiO2 . После фильтрации раствор сульфата алюминия, содержащий примеси FeSO4 , обрабатывают каменным углем или пропускают сернистый ангидрид в присутствии 40-47%-ной H2SO4, осаждая из раствора FeSO4 . 7H2 O. При охлаждении раствора кристаллизуют AL2 (SO4 )3. 16—18H2 O высокой чистоты.

Из рассмотренных ранее способов получения сульфата алюминия следует, что в большинстве из них не решен вопрос глубокой очистки растворов от железа. Между тем в настоящее время в ряде производств к сернокислому алюминию предъявляются жесткие требования по содержанию железа. Сущность способа получения сернокислого алюминия высокой чистоты (рис. 1.2 ) в том, что каолин смешивают с серной кислотой в количестве около 20% и промывной водой 2%. Пульпу подвергают грануляционному спеканию при температуре 200-230 С и обжигу при 560-580 С в печах кипящего слоя. Обожженные гранулы разлагаются в барабанных аппаратах противоточного типа непрерывного действия. Слив поступает на контрольную фильтрацию и затем на восстановление сульфата трехвалентного железа до двухвалентного алюминиевой стужкой при 98-100 С. Из сернокислого раствора в автоклавах кристаллизуют водородный алунит при 230 С в течение 1ч в присутствии восстановленного водородного алунита, который подается в количестве 60-65% от имеющегося в растворе глинозема. Восстановительный обжиг проводят при 560-580 С. В качестве восстановителя могут использовать конвертированный природный газ, генераторный газ, пары солярного масла, сера и др. Химизм процесса можно представить суммарной реакцией:

H2 [AL2 (SO4)4 (OH)12 ] + 4CO 3AL2 O3 +7H2 O + 4SO2 + 4CO2 .

Рисунок 1.2 — Принципиальная технологическая схема производства сернокислого алюминия высокой чистоты из каолинов.

При восстановительном обжиге содержание активного AL2O3 возрастает на 33% , а возврат безводного сернокислого алюминия на кристаллизацию водородного алунита полностью исключается.

При автоклавном гидролизе осуществляется полный вывод оксида алюминия в твердую фазу в виде водородного алунита. В маточном растворе остается сульфат двухвалентного железа, который отделяется фильтрованием . Это позволяет исключить из технологического передела операции обезжелезивания обожженным каолином, фильтрацию и промывку железистого шлама. В результате потери глинозема в процессе обезжелезивания отсутствуют, упрощается аппаратурное оформление, сокращается количество промывных вод.

Водородный алунит промывают водой. Промывная вода1 поступает большей частью на промывку сиштофа, а также на приготовление пульпы. Отмытый водородный алунит разлагают серной кислотой в стехиометрияеском количестве с получением сернокислого алюминия. Для сульфатизации используют раствор серной кислоты такой концентрации, чтобы получить раствор концентрацией до 15% AL2O3, который можно было бы подавать непосредственно на кристаллизацию товарного AL2(SO4)3.

Водородный алунит может выдаваться в виде полупродукта. Он обладает лучшими транспортабельными свойствами, чем 18-водный сернокислый алюминий.

В процессе сульфатизации извлечение глинозема в раствор 90-92%. Из раствора кристаллизуют водородный алунит следующего химического состава, % : 39,8 AL2 O3; 42,4 SO3 ; 17,8H2 O; 0,001-0,003 Fe2 O3 . Из этого полупродукта получали сернокислый алюминий, в котором содержалось 0,0005-0,001% Fe2 O3 .

Из сопоставления этого способа с ранее известными видно, что он имеет ряд преимуществ, которые заключаются в следующем :

1. из технологического процесса исключены операции обезжелезивания каолином, контрольной фильтрации, промывки железистого шлама;

2. кристаллизация водородного алунита проводится в присутствии восстановленного продукта гидролиза, что позволяет при одном и том же расходе его увеличить долю активного AL2O3 на 33 % ;

3. в процессе автоклавного гидролиза достигается полный вывод алюминия из раствора, что позволяет удалить железо из процесса, а также уменьшить грузопотоки на стадиях грануляционное спекание — кристаллизация;

4. водородный алунит может выдаваться в виде полупродукта и транспортироваться к месту потребления. Это позволяет стоить мощные предприятия по получению его вблизи сырьевой базы;

5. процесс может быть осуществлен в непрерывном цикле,что позволит его автоматизировать.

Исходным сырьем для получения неочищенного нефелинового коагулянта является нефелиновый концентрат и контактная серная кислота. Неочищенный нефелиновый коагулянт имеет состав, % : 10-12 AL2 O3; 0,5-0,9 Fe2 O3 и 23-29 нерастворимый остаток.

Производство его осуществляется по трем технологическим схемам.

Так, по одной из них нефелиновый концентрат смешивают с купоросным маслом, при этом концентрат с крепкой серной кислотой практически не взаимодействует, полученная суспензия дозируется ковшевым дозатором в горизонтально расположенный шнек-реактор, куда подается вода из расчета разбавления кислоты до 70-73%. После разбавления реакция протекает с разогревом массы и испарением воды. В результате прохождения через три последовательно расположенных шнека-реактора она становится сыпучей, слегка влажной. Выгружаемый из последнего реактора продукт транспортируется на склад, где происходит его дозревание в течение 2-4 суток, после чего он отгружается потребителю. Вызревание на складе необходимо вследствие того, что разложение а шнеках-реакторах проходит лишь на 85-89% и резко замедляется из-за недостатка жидкой фазы. При дозревании степень разложения увеличивается до 91-93%. Этот способ устарел. Он характеризуется низким коэффициентом использования основного оборудования — шнеков-реакторов вследствие интенсивного эрозионно-коррозионного износа материала аппаратуры, необходимостью дозревания продуктов на складе, неудовлетворительными санитарно-гигиеническими условиями.

По второй технологической схеме нефелиновый концентрат разлагается разбавленной H2 SO4 (35-40%) в баке с мешалкой в периодических условиях. Суспензия выливается на кристаллизационный стол, где застывает и разрезается на куски. Степень разложения концентрата достигает 95%. Этот способ исключает дозревание продукта на складе, но также характеризуется низким содержанием AL2 O3 в продукте и периодичностью процесса.

Третья технологическая схема разработана УНИИХИМом и получила название "камерный способ". Нефелиновый концентрат непосредственно смешивают с разбавленной серной кислотой (65-70%) в турбинном вертикальном смесителе непрерывного действия. Полученная пульпа вытекает в камеру аналогичную суперфосфатной, где через 25-30 мин. запустевает, образуя так называемый пирог. Время пребывания массы в камере составляет 1ч. Вырезанный фрезой камерный продукт подается транспортером и разбрасывается на склад. Дозревание продукта на складе не требуется, так как степень разложения концентрата на выходе из камеры 92,5%.

К-во Просмотров: 218
Бесплатно скачать Курсовая работа: Обеспечение экологической безопасности путем разработки малоотходного способа реутилизации сернокислых отходов аккумуляторных батарей