Курсовая работа: Обработка электрического сигнала с помощью фильтрации

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Медицинские приборы и оборудование»

Курсовой проект

на тему:

«Обработка электрического сигнала с помощью фильтрации»

по дисциплине «Методы обработки биомедицинских сигналов»

Пенза 2005


Введение

Методы и техника обработки сигналов в настоящее время составляют основу важнейших разработок во многих областях научных знаний. В течение последних лет методы цифровой обработки сигналов приобрели большую важность ввиду того, что теперь они не только заменяют классические аналоговые методы во многих традиционных областях техники, но и применяются во многих новых областях, таких как медицинская техника.

В большинстве случаев электрический фильтр представляет собой частотно-избирательное устройство. Следовательно, он пропускает сигналы определенных частот и задерживает или ослабляет сигналы других частот. Наиболее общими типами частотно-избирательных фильтров являются фильтры нижних частот (которые пропускают низкие частоты и задерживают высокие), фильтры верхних частот (которые пропускают высокие частоты и задерживают низкие), полосно-пропускающие фильтры (которые пропускают полосу частот и задерживают те частоты, которые расположены выше или ниже этой полосы) и полосно-заграждающие фильтры (которые задерживают полосу частот и пропускают частоты, расположенные выше и ниже этой полосы).


1. Основы анализа электрических сигналов

Применение методов цифровой обработки сигналов и, в частности, цифровой фильтрации широко распространено и используется во многих важных областях исследовании, например: обработка речевых сигналов, цифровая телефония и цифровая связь, обработка фототелеграфных и телевизионных изображений, радио- и гидролокационные системы, биология и медицина, космические исследовательские и действующие системы, исследование земных ресурсов и т.д.

В биомедицинской практике используется множество сигналов, имеющих электрическую природу. При регистрации и оценке таких сигналов сталкиваются с значительным влиянием на конечные результаты помех различного рода, поэтому биомедицинские сигналы нуждаются в обработке.

Из всех методов, используемых при цифровой обработке сигналов, наиболее важным является цифровая фильтрация. В прошлом интерес ограничивается теоретическими исследованиями, но последнее время она используется во многих важных практических приложениях для обработки одномерных и двумерных сигналов.

2. Исследование полосового фильтра

Полосовой (или полосно-пропускающий) фильтр представляет собой устройство, которое пропускает сигналы в диапазоне частот с шириной полосы BW, расположенной приблизительно вокруг центральной частоты ω0 (рад/с). На рисунке 1 изображена идеальная и реальная амплитудно-частотные характеристики полосового фильтра.


Рисунок 1

В реальной характеристике частоты ωL и ωU представляют собой нижнюю и верхнюю частоты среза и определяют полосу пропускания ωL ≤ω0 ≤ωU и ее ширину BW= ωU – ωL .

В полосе пропускания амплитудно-частотная характеристика никогда не превышает некоторого определенного значения, например А1 . Существует также две полосы задерживания, где значение амплитудно-частотной характеристики никогда не превышает заранее выбранного значения, наример А2 . Диапазоны частот пежду полосами задерживания и полосой пропускания образуют нижнюю и верхнюю переходные области, в которых характеристика является монотонной.

Отношение Q= ω0 /BW характеризует качество самого фильтра и является мерой его избирательности. Высокому значению Q соответствует относительно узкая, а низкому значению Q – относительно широкая ширина полосы пропускания. Коэффициент усиления фильтра К определяется как значение его амплитудно-частотной характеристики на центральной частоте.

Передаточная функция полосно-пропускающего фильтра имеет следующий вид:


Для исследования полосового фильтра, ввели в командное окно пакета MATLAB оператор «rlcdemo». Открылось окно, предназначенное для построения аналогового фильтра. Выбрали полосовой фильтр с последовательным соединением соединением элементов RLC: R=4,5; L=2,5; C=0,5 (рисунок 2).

Рисунок 2

Исходя из значений системных параметров рассчитали коэффициенты полиномов числителя и знаменателя:

G(s)= 1.8s

S2 +1.8s+0.8

Средствами MATLAB построли прередаточную функцию системы sys:

>> sys=tf([0 1.8 0], [1 1.8 0.8])

Transfer function:

1.8 s

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 201
Бесплатно скачать Курсовая работа: Обработка электрического сигнала с помощью фильтрации