Курсовая работа: Обучение школьников решению составных задач
До решения простых задач ученики усваивают знание следующих связей [15, с.72]:
Связи операций над множествами с арифметическими действиями, то есть конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения; если имеем 4 и 2 флажка, то чтобы узнать, сколько всего флажков, надо к 4 прибавить 2.
Связи отношений «больше» и «меньше» (на сколько единиц и в несколько раз) с арифметическими действиями, то есть конкретный смысл выражений «больше на…», «больше в … раз», «меньше на…», «меньше в … раз». Например, больше на 2, это столько же и еще 2, значит, чтобы получить на 2 больше, чем 5, надо к 5 прибавить 2.
Связи между компонентами и результатами арифметических действий, то есть правила нахождения одного из компонентов арифметических действий по известному результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания. Из суммы вычитают известное слагаемое.
Связи между данными величинами, находящихся в прямо или обратно пропорциональной зависимости, и соответствующими арифметическими действиями. Например, если известна цена и количество, то можно найти стоимость действием умножения.
Кроме того, при ознакомлении с решением первых простых задач, ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
Подготовкой к решению составных задач будет умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи [13, с.18].
Необходимо отметить, что при работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.
б) Ознакомление с решением задач.
На этой второй ступени обучения решению задач дети учатся устанавливать связи между данными и искомым и на этой основе выбирать арифметические действия, то есть они учатся переходить от конкретной ситуации, выраженной в задаче к выбору соответствующего арифметического действия [6, с.35]. В результате такой работы учащиеся знакомятся со способом решения задач рассматриваемого вида.
В методике работы на этой ступени выделяются следующие этапы:
1 этап – ознакомление с содержанием задачи;
2 этап – поиск решения задачи;
3 этап – выполнение решения задачи;
4 этап – проверка решения задачи [2, с.317].
Выделенные этапы органически связанны между собой, и работа на каждом этапе ведется на этой ступени преимущественно под руководством учителя.
Заключительным этапом в работе над задачей является работа после решения задачи. В методической литературе опубликовано немало статей (Царева С.В., Шикова Р.Н.), где описаны виды дополнительной работы над уже решенной задачей.
Многие авторы и методисты уделяют много внимания последнему этапу: работе с задачей после ее решения.
в) Закрепление умения решать задачи.
Для проведения работы над задачей после ее решения используют следующие приемы: преобразование задачи; сравнение задач; самостоятельное составление аналогичных задач; обсуждение разных способов решения задачи [2, с.273].
Для правильного обобщения способа решения задач определенного вида большое значение имеет система подбора и расположения задач. Система должна удовлетворять определенным требованиям. Прежде всего задачи должны постепенно усложнятся. Усложнение может идти как путем увеличения числа действий, которыми решается задача, так и путем включения новых связей между данными и искомым.
Одним из важных условий для правильного обобщения младшими школьниками способа решения задач определенного вида является решение достаточного числа их. Однако задачи рассматриваемого вида должны включаться не подряд, а рассредоточено: сначала включаются чаще, а потом все реже и реже, вместе с другими видами. Это необходимо для того, чтобы предупредить запоминание способа решения.
Выработке умения решать задачи нового вида помогают упражнения на сравнение решений задач этого вида и ранее рассмотренных видов, но сходных в каком- то отношении с задачами нового вида и ранее рассмотренных видов, но сходных в каком- то отношении с задачами нового вида. Такие упражнения предупреждают смешение способов решения задач этих видов.
Выработке умения решать задачи рассматриваемого вида помогают так называемые упражнения творческого характера. К ним относятся решение задач повышенной трудности, решение задач несколькими способами, решение задач с недостающими и лишними данными, решение задач, имеющих несколько решений, а так же упражнения в составлении и преобразовании задач.
Решение задач повышенной трудности помогает выработать у детей привычку вдумчиво относиться к содержанию задачи и разносторонне осмысливать связи между данными и искомым. Задачи повышенной трудности следует предлагать в любом классе, имея в виду одно условие: детям должно быть известно решение обычных задач, к которым сводится решение предлагаемой задачи повышенной трудности.
Многие задачи могут быть решены различными способами. Поиск различных способов решения приводит детей к «открытию» новых связей между данными и искомым.
Работа над задачами с недостающими и лишними данными воспитывает у детей привычку лучше отыскивать связи между данными и искомым.
Полезно включать и решение задач, имеющих несколько решений. Решение таких задач будет способствовать формированию понятия переменной.
Упражнения по составлению и преобразованию задач являются чрезвычайно эффективными для обобщения способа их решения.