Курсовая работа: Очистка промышленных газов от сероводорода

Щелочные (карбонатные способы). Этот метод нашел применение в ряде стран ввиду сравнительной дешевизны процесса и низкой стоимости получаемой серы. При регенерации сероводород выделяется в виде концентрированного газа

Этот концентрированный газ можно использовать для получения серной кислоты путем сжигания сероводорода. Возможно также использование его для получения элементарной серы путем каталитического окисления. Поглотителем служат разбавленные водные растворы Nа2 СОз (30 г/л) или К2 СОз.

Усовершенствованием процесса явился вакуум-содовый метод с терморегенерацией поглотительного раствора. В последнее время применяется вакуум-поташный метод, технологическая схема которого и аппаратурное оформление аналогичны вакуум-содовому.

По степени очистки газа и простоте лучшим является этаноламиновый способ, при котором достижима очистка газа до следов сероводорода. В условиях атмосферного давления мышьяково-содовый способ (2 ступенчатый) обеспечивает степень очистки газа от H2 S 92—98%; при содовом и поташном способах степень очистки достигает 90%. Под давлением степень очистки в последних двух способах повышается.

Интенсификация очистки коксового газа от сероводорода мышьяковосодовым раствором в ротационных аппаратах. С целью интенсификации процессов абсорбции сероводорода и регенерации мышьяковосодовоге раствора эти процессы исследовались в горизонтальных механических абсорберах с большим числом оборотов. Опыты проводились на установке с использованием промышленного коксового газа, предназначенного для синтеза аммиака.

Горизонтальный механический абсорбер имел осевой вал с закрепленными на нем 4 дисками с 12 отогнутыми лопатками на каждом диске. Вал абсорбера непосредственно соединен с валом мотора, число оборотов которого регулировалось с помощью реостата.

Конструкция дисков играет важную роль в создании оптимального гидродинамического режима. Лучшими оказались диски с лопатками, развернутыми навстречу друг другу;

Диски перфорированы отверстиями диаметром 8 мм; общая площадь отверстий 15—18% ко всей площади диска.

Из сопоставления производительности реакционных объемов насадочных башен и ротационных аппаратов при равных условиях можно заключить, что при очистке газов от H2 S ротационные аппараты работают интенсивнее насадочных башен в 12— 15 раз.

Очистка коксового газа от сероводорода раствором соды в равнопроточных полых башнях. Исследования очистки коксового газа от сероводорода раствором соды проведены на установке, смонтированной на Днепродзержинском металлургическом заводе . Коксовый газ, очищенный от сероводорода, предназначался для обогрева безокислительной опытной методической печи . Установка обеспечила длительную и непрерывную очистку газа от сероводорода.

Основным аппаратом установки является полая равнопроточная распылительная башня объемным центробежным распылителем, приводимым во вращение электродвигателем.

Газ на очистку поступал из газохода через вентиль башню. Расход газа контролировался диафрагмой. Поглотительный раствор поступал в башню из банка через вентиль и ротаметр. Температура и давление в башне контролировалось термометром и манометром. Очищенный газ отводился через газоход в смеситель, куда поступал также и воздух; далее газовая смесь поступала в печь. Отработанный раствор из башни поступал в сборник и насосом подавался на рециркуляцию.

Поглощение сероводорода из газов раствором цианамида кальция с получением тиомочевины. Донецким институтом ИРЕА совместно с Днепропетровским химико-технологическим институтом проведены исследования по очистке газов от сероводорода раствором СаСN2 с получением тиомочевины.

Абсорбция газов раствором цианамида кальция протекает с большой скоростью. Степень поглощения сероводорода из коксового газа в механическом абсорбере достигала 98—99%.

При этом в растворе образовывалась тиомочевина, которая отделялась от Са(Н8)г на фильтре и после кристаллизации представляла собой стандартный продукт.

Очистка газов от сероводорода с получением сульфида аммония. Водный раствор аммиака является хорошим поглотителем сероводорода. Взаимодействие NНз и Н2 S протекает по уравнениям

3 + Н2 S = NH4 HS;

2 NН3 + Н2 S = (NН4 )2 S.


Однако этот метод до сих пор не нашел практического применения вследствие сложности и дороговизны регенерации сульфидных соединений аммония с возвратом аммиака в процесс.

Устранение дорогостоящей и сложной операции (регенерации раствора с возвратом аммиака в процесс) делает этот метод экономически рентабельным.

Указанный метод обеспечивает полную очистку газа от сероводорода с одновременным получением сульфида аммония.

Очистка коксового газа от сероводорода и других примесей торфоаммиачным поглотителем. Основными недостатками существующих методов очистки коксового газа является многостадийность процесса, громоздкость аппаратуры, большие капитальные и эксплуатационные затраты. С целью устранения этих недостатков исследован процесс очистки коксового газа с помощью торфощелочного сорбента в непрерывно действующем аппарате с кипящим слоем. Отличительной особенностью этого метода является его непрерывность, одностадийность, компактность и попутное получение дешевых органоминеральных удобрений.

Адсорбционно-каталитические методы применяют для очистки промышленных выбросов от диоксида серы, сероводорода и серо-органических соединений. Катализатором окисления диоксида серы в триоксид и сероводорода в серу служат модифицированный добавками активированный уголь и другие углеродные сорбенты. В присутствии паров воды на поверхности угля в результате окисления SO2 образуется серная кислота, концентрация которой в адсорбенте составляет в зависимости от количества водяного пара при регенерации угля от 15 до 70%.

Активаторами этой каталитической реакции служат водяной пар и аммиак, добавляемый к очищаемому газу в количестве ~0,2г/м3. Активность катализатора снижается по мере заполнения его пор серой и когда масса S достигает 70—80% от массы угля, катализатор регенерируют промывкой раствором (NH4)2S. Промывной раствор полисульфида аммония разлагают острым паром с получением жидкой серы.

Представляет большой интерес очистка дымовых газов ТЭЦ или других отходящих газов, содержащих SO2 (концентрацией 1-2% SO2), во взвешенном слое высокопрочного активного угля с получением в качестве товарного продукта серной кислоты и серы.

Другим примером адсорбционно-каталитического метода может служить очистка газов от сероводорода окислением на активном угле или на цеолитах во взвешенном слое адсорбента-катализатора.

Широко распространен способ каталитического окисления токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители.

В промышленности применяют также каталитическое восстановление и гидрирование токсичных примесей в выхлопных газах. На селективных катализаторах гидрируют СО до CH4 и Н2О, оксиды азота – до N2 и Н2О etc. Применяют восстановление оксидов азота в элементарный азот на палладиевом или платиновом катализаторах.

Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакци­онную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.

К-во Просмотров: 539
Бесплатно скачать Курсовая работа: Очистка промышленных газов от сероводорода