Курсовая работа: Окись этилена
Образующаяся хлорноватистая кислота присоединяется к этилену, давая этнленхлоргидрин:
При пропускании этилена в хлорную воду всегда протекают одновременно две реакции: образование этиленхлоргидрина в результате взаимодействия с этиленом хлорноватистой кислоты и образование дихлорэтана при взаимодействии с этиленом растворенного (молекулярного) хлора:
Относительное количество образующегося дихлорэтана будет возрастать по мере увеличения концентрации этиленхлоргидрина в воде, так как одновременно повышается концентрация хлористого водорода, а следовательно, увеличивается количество недиссоциированного хлора, реагирующего с этиленом с образованием дихлорэтана.
Выделение высококонцентрированногоэтиленхлоргидрина из разбавленных растворов связано с большими трудностями. Несмотря на значительную разницу температур кипения этиленхлоргидрина (129°С) и воды разделить их обычной ректификацией невозможно, так как они образуют азеотропную смесь, содержащую 41% этиленхлоргидрина и кипящую при 98°С. Поэтому путем ректификации в лучшем случае удается отделить 41%-ный водный раствор этиленхлоргидрина. На практике во второй стадии процесса при получении окиси этилена непосредственно используют разбавленные растворы этиленхлоргидрина.
Окись этилена образуется при взаимодействии этиленхлоргидрина со щелочью:
Выход окиси этилена может значительно понизиться вследствие протекания побочной реакции – омыления этиленхлоргидрина разбавленной щелочью в этиленгликоль:
Чем ниже концентрация реагирующих компонентов, тем больше образуется этиленгликоля и тем ниже выход окиси этилена. Более благоприятные условия создаются, если в колонну, в которой проводится обработка этиленхлоргидрина щелочью, снизу вводить пар и подогревать 4 – 6%-ный раствор этиленхлоргидрина до температуры кипения азеотропной смеси этиленхлоргидрина и воды. При этом содержание этиленхлоргидрина в парах повышается до 41% и во взаимодействие со щелочью, орошающей колонну, вступает не разбавленный, а концентрированный этиленхлоргидрин. Концентрация применяемой щелочи также должна быть достаточно высокой (40%-ный раствор едкого натра или 30%-ное известковое молоко). Таким образом, реакция протекает фактически между концентрированными этиленхлоргидрином и щелочью, и образование этиленгликоля сводится к минимуму.
Рис. 2.1. Схема производства окиси этилена непрерывным методом через этиленхлоргидрин.
На рис. 2.1 приведена технологическая схема производства окиси этилена через этиленхлоргидрин непрерывным методом . В стальной реакционной колонне 3, футерованной кислотоупорными плитками, производится гипохлорирование этилена с образованием этиленхлоргидрина. Колонна снабжена двумя боковыми соединяющимися отводами (верхним и нижним). Газообразный хлор подается через диффузор в нижний отвод и распыляется в поступающей сверху воде, а этилен вводится снизу в основную часть реакционной колонны. Благодаря такому устройству аппарата реакционная жидкость интенсивно циркулирует и перемешивается; условия гидролиза хлора и взаимодействия хлорноватистой кислоты с этиленом улучшаются, а, следовательно, уменьшается возможность образования дихлорэтана.
Для повышения выхода этиленхлоргидрина в колонну 3 вводят большой избыток этилена против стехиометрически требуемого количества. Отходящий из колонны избыточный этилен после очистки возвращают в производственный цикл. Кроме этилена в отходящем из колонны газе содержатся пары дихлорэтана и хлористый водород, нейтрализуемый в насадочном скруббере 1 холодным раствором щелочи. При этом одновременно конденсируется большая часть паров дихлорэтана, который вместе с отработанной щелочью выводят из скруббера в разделитель 2. После расслаивания жидкостей дихлорэтан направляют на очистку, а отработанную щелочь сливают. Чтобы в циркулирующем газе не накапливались инертные примеси, часть газа непрерывно отбирают, очищают от остатка паров дихлорэтана в угольном адсорбере и далее используют как топливо.
Образующийся в колонне раствор этиленхлоргидрина (4 – 6%-ный) поступает в реакционную колонну 4, где при 100°С обрабатывается щелочью (30%-ное известковое молоко). Реакционную массу подогревают паром, вводимым в нижнюю часть колонны. Получаемая в результате омыления этиленхлоргидрина окись этилена вместе с парами побочных продуктов (дихлорэтан, ацетальдегид) через дефлегматор 5 поступает в конденсатор 7, охлаждаемый водой или рассолом. Конденсат разделяют в ректификационной тарельчатой колонне 9. Дистиллятом этой колонны является окись этилена, направляемая после ожижения в конденсаторе 8 на дальнейшее использование.
Кроме колонных аппаратов (рис. 2.1), для омыления этиленхлоргидрина успешно применяют омылители спирального типа. В омылителях подобного типа достигается более полное омыление этиленхлоргидрина.
При получении окиси этилена хлоргидринным методом общая степень превращения этилена достигает 95%; выход этиленхлоргидрина составляет около 80% от теоретического (считая на этилен). На 1 тонну окиси этилена получается около 200 кгдихлорэтана.
Существенными недостатками процесса получения окиси этилена через этиленхлоргидрин являются большой расход хлора и извести, а также значительные капитальные затраты.
Более экономичен процесс прямого каталитического окисления этилена в окись этилена. При этом методе расходуется только этилен и воздух, не требуется затрат хлора и извести, не образуется побочный продукт - дихлорэтан и меньше капитальные затраты. Поэтому метод прямого окисления приобретает все большее распространение.
2.2. Каталитическое окисление этилена
Для проведения реакции прямого окисления этилена было предложено большое число высокоактивных катализаторов. Почти все они содержат в качестве основного компонента серебро . Применяемые катализаторы можно разделить на две основные группы:
· сплошные серебряные катализаторы;
· активное серебро на носителе (трегерные катализаторы).
Катализаторы первой группы представляют собой металлическое серебро, которое обычно гранулируют и гранулы обрабатывают кислотами, что увеличивает поверхность катализатора и повышает его активность. Если катализатор предназначается для проведения процесса окисления этилена в псевдоожиженном слое, металлическое серебро измельчают до порошкообразного состояния и формуют в виде таблеток или шариков.
Предложены также сплавные скелетные катализаторы; серебро сплавляют с кальцием, который извлекается затем уксусной кислотой. Недостатком сплошных скелетных катализаторов является их высокая стоимость из-за большого расхода серебра.
Трегерные катализаторы готовят нанесением активного серебра на носитель (окись алюминия, карборунд, силикагель, пемза). Для приготовления трегерного катализатора чаще всего пропитывают носитель растворами некоторых соединений серебра (например, водным раствором нитрата серебра) с последующим восстановлением до металлического серебра.
В настоящее время в промышленности используются только серебряные катализаторы, но в последние годы появились сообщения об окислении этилена в окись этилена в присутствии солей или окисей других металлов. Из них особого внимания заслуживает процесс получения окиси этилена в паровой фазе на катализаторе, представляющем собой смесь и . Окисление этилена производилось кислородом при разрежении в интервале температур 400 – 600°С с 90 – 100 %-ным выходом окиси этилена.
В жидкой фазе окисление этилена протекает в среде дибутилфталата в присутствии окиси ртути. При этом образуется окись этилена, хотя и в меньшем количестве, чем в присутствии катализаторов, содержащих серебро. Окисление этилена в этих условиях осуществляется за счет восстановления окислов металлов.
Большое влияние на выход окиси этилена оказывает соотношение вводимых в процесс воздуха и этилена. Максимальный выход получается при соотношении воздух : этилен от 7:1 до 8:1, что соответствует содержанию в газовой смеси 12 об. % этилена и 88 об. % воздуха. Однако такие смеси взрывоопасны и поэтому приходится проводить процесс в менее выгодных условиях – при концентрации этилена ниже нижнего предела взрываемости, который составляет 2,75 об. % этилена в смеси с воздухом.
При получении окиси этилена можно использовать в качестве окислителя технический кислород. В этом случае желательно применять концентрированный этилен (98 %-ный и выше). В присутствии парафиновых углеводородов выход окиси этилена понижается; при наличии в газе гомологов этилена в процессе окисление развиваются высокие температуры и затрудняется отвод выделяющегося тепла. Присутствие ацетилена в исходной газовой смеси недопустимо, так как с серебром он образует взрывчатый ацетеленид серебра. Если исходный этилен содержит ацетилен, то его удаляют путем промывки газа селективными растворителями (ацетоном, диметилформамидом) или гидрируют до этилена на никелевом катализаторе.
От соединений серы исходный газ очищают обычным методом – промывкой щелочью и водой.