Курсовая работа: Онтология, эпистемология и философия языка Рассела

При замене классов на функции возникают некоторые проблемы, краткую экспозицию которых мы сейчас представим. Один и тот же класс можно задать с помощью различных функций. Например, класс людей будет задавать и функция “бесперое, двуногое (х)” и “политическое животное (х)”. Такие функции (т.е. функции, которые удовлетворяет одинаковый набор аргументов), Рассел называет формально эквивалентными. А раз эти функции специфицируют один и тот же класс предметов, то в некоторых контекстах их можно заменить друг на друга, причем истинность целого не изменится, как, например, в “Сократ является бесперым и двуногим”. Такие контексты Рассел называет экстенсиональными. Эти контексты не допускают двусмысленностей; входящие в них функции вполне можно рассматривать вместо классов. Причем все, что можно сказать о какой-либо функции, будет приложимо и к функции, формально ей эквивалентной. Значит, любое высказывание о классе можно заменить высказыванием об одной из формально эквивалентных функций, однозначно этот класс специфицирующей. Однако здесь возникает проблема. Дело в том, что не всегда то, что можно сказать об одной формально эквивалентной функции, будет приложимо к другой. Примером такого неэкстенсионального контекста может служить высказывание “Платон утверждал, что бесперость и двуногость однозначно определяют человека”. В него входит функция ‘двуногое и бесперое (х)’, но попытка заменить ее на функцию ‘политическое животное (х)’ сделает высказывание ложным. Следовательно, не все, что можно сказать об одной функции, приложимо к другой. Однако Рассел считает, что можно сконструировать такую формально эквивалентную функцию, которая удовлетворяла бы требуемому свойству. Другими словами, и для ‘бесперое, двуногое (х)’ и для ‘политическое животное (х)’, существует формально эквивалентная функция, которая однозначно определяет класс людей и при этом является экстенсиональной. В общем случае, если имеется высказывание, изменяющее свое истинностное значение при замене одной формально эквивалентной функции на другую, всегда можно сконструировать функцию формально, эквивалентную исходным функциям, которая будет экстенсиональной. С ее помощью и можно любое высказывание о классе преобразовать в высказывание о функции.

Единственное ограничение, накладываемое Расселом на образование такой функции, связано с требованием теории типов. Она должна указывать предикативное свойство соответствующего класса. Различие между предикативными и непредикативными свойствами можно проиллюстрировать следующим примером. Рассмотрим свойство быть человеком и свойство иметь все свойства человека. И то и другое относятся к одному и тому же классу предметов, но в отличие от первого, второе свойство имеет в виду и само себя. Так как если мы утверждаем, что Сократ имеет все свойства человека, то наряду с приписыванием ему свойств быть двуногим и бесперым, быть политическим животным и т.д. мы приписываем ему и свойство иметь все свойства человека. Непредикативное свойство самореферентно, т.е. указывает и на само себя. Соответственно, функция, выражающая самореферентное свойство, будет применяться сама к себе, что, как было показано выше, приводит к парадоксу. С точки зрения Рассела, функции, выражающие непредикатитвные свойства, должны относиться к более высокому типу, чем функции, выражающие предикативные свойства, несмотря на то, что они специфицируют один тот же класс. Таким образом, функции, как и классы, должны рассматриваться в строгой иерархии, которая конструируется Расселом в разветвленной теории типов.

Утверждение о существовании формально эквивалентной предикативной функции, которая может заменить класс во всех контекстах, доказать конструктивными средствами невозможно. Поэтому Рассел принимает его как аксиому, так называемую аксиому сводимости, которая формулируется следующим образом: «Существует такая формально эквивалентная предикативная функция f , что для всякого x аргумент x удовлетворяет функцию f тогда и только тогда, когда он удовлетворяет функцию f ». Символически:

u ? ( $ f ) ( x ) ( fx ? f ! x ),

где ‘ ? ’ знак тождества, а ‘!’ в выражении ‘ f ! x ’ указывает на предикативность функции f .

6. Примитивные значения и теория дескрипций

Рассмотрение отношений, чисел и классов демонстрирует один важный принцип, который практикует Рассел. Логический анализ воспринимается им как метод, который устанавливает критерий того, что может рассматриваться как реально существующее, а что нет. Например, отношения, которые нельзя редуцировать к свойствам, реальны, а числа и классы – нет, поскольку вторые суть фикции, так как редуцируемы к пропозициональным функциям, а

К-во Просмотров: 397
Бесплатно скачать Курсовая работа: Онтология, эпистемология и философия языка Рассела