Курсовая работа: Определение состава стиральных порошков
До 1 января 2008 года обязательной сертификации подлежали среди средств для стирки только порошки. Они должны были выпускаться в соответствии с ГОСТ 25644-96 «Средства моющие синтетические порошкообразные. Общие технические требования». С первого дня 2008 года в силу вступил новый ГОСТ Р 52488-2005 «Средства для стирки. Общие технические условия».
Таблица 1 из ГОСТ Р 52488-2005 «Средства для стирки. Общие технические условия»:
Таблица 2 из ГОСТ 25644-96 «Средства моющие синтетические порошкообразные. Общие технические требования»:
Как видно количество веществ определяется по ГОСТ 22567. Где предлагается исследование состава благодаря потенциометрическому анализу. Электрохимические методы анализа основаны на измерении электрической проводимости, потенциалов, тока и других величин. Характерной особенностью при этом является электрический характер аналитического сигнала. Группа электрохимических методов анализа включает методы потенциометрии, кондуктометрии, амперометрии и др.
Потенциометрические методы анализа. Основными достоинствами потенциометрического метода являются его высокая точность, высокая чувствительность и возможность проводить титрования в более разбавленных растворах, чем это позволяют визуальные индикаторные методы.
Необходимо отметить также возможности определения этим методом нескольких веществ в одном растворе без предварительного разделения и титрования в мутных и окрашенных средах.
Значительно расширяется область практического применения потенциометрического титрования при использовании неводных растворителей. Они позволяют, например, найти содержание компонентов, которые в водном растворе раздельно не титруются, провести анализ веществ, нерастворимых или разлагающихся в воде и т.д.
Потенциометрические методы анализа известны с конца прошлого века, когда Нернст вывел (1889) известное уравнение
E0 - стандартный потенциал редокс-системы; R - универсальная газовая постоянная, равная 8,312 Дж/(моль К); T - абсолютная температура, К; F - постоянная Фарадея, равная 96485 Кл/моль; n - число электронов, принимающих участие в электродной реакции; aox , ared - активности соответственно окисленной и восстановленной форм редокс-системы; [ox], [red] - их молярные концентрации; Гox , Гred - коэффициенты активности.
Беренд сообщил (1883) о первом потенциометрическом титровании. Интенсивное развитие потенциометрии в последние годы связано, главным образом, с появлением разнообразных типов ионоселективных электродов, позволяющих проводить прямые определения концентрации многих ионов в растворе, и успехами в конструировании и массовом выпуске приборов для потенциометрических измерений.
Потенциометрические методы анализа подразделяют на прямую потенциометрию (ионометрию) и потенциометрическое титрование. Методы прямой потенциометрии основаны на прямом применении уравнения Нернста для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу соответствующего электрода. При потенциометрическом титровании точку эквивалентности определяют по резкому изменению (скачку) потенциала вблизи точки эквивалентности.
Кроме Потенциометрического анализа существуют множества других. Мы постараемся коротко изложить суть основных видов анализа.
1. ИК спектрометрия. Инфракрасные спектры поглощения, отражения или рассеяния несут чрезвычайно богатую информацию о составе и свойствах пробы.
Сопоставляя ИК спектр образца со спектрами известных веществ, можно идентифицировать неизвестное вещество, определить основной состав пищевых продуктов, полимеров, обнаружить примеси в атмосферном воздухе и газах, провести фракционный или структурно-групповой анализ. Методом корреляционного анализа по ИК спектру пробы также можно определить его физико-химические или биологические характеристики, например всхожесть семян, калорийность пищевых продуктов, размер гранул, плотность и т.д. В современных приборах ИК спектр определяется сканированием по сдвигу фаз между двумя частями разделенного светового пучка (Фурье спектрометрия). Этот метод дает значительный выигрыш в фотометрической точности и точности отсчета длины волны.
Фурье спектрометры значительно выигрывают в фотометрической точности у дифракционных приборов. В дифракционных приборах на приемник попадает свет только в узком спектральном интервале, который попадает на выходную щель монохроматора. В Фурье спектрометрах на фотоприемник всегда поступает весь свет источника, и все спектральные линии регистрируются одновременно. Следовательно, возрастает