Курсовая работа: Оптические цифровые телекоммуникационные системы

При управлении конкретной сетью важным параметром является максимальное число узлов (мультиплексоров), управление которыми возможно. Если число узлов в результате роста сети превысило допустимое количество, то сеть управления должна быть разбита на области с меньшим числом управляемых узлов. Если такое разбиение нужно, то оно должно быть проведено с учетом целого ряда ограничений, обычно указываемых в руководствах по маршрутизации. Некоторые вещи полезно знать для того, чтобы осуществить такое разбиение:

¾ наиболее удобной топологией для сети управления, имеющей несколько областей, является то­пология звезды,

¾ области управления могут не иметь ничего общего с топологией транспортной сети SDH (хотя это и рекомендуется),

¾ используя портативный компьютер в качестве элемент-менеджера; при переходе из облас­ти в область надо менять адрес NSAP у портативного компьютера.

На практике адреса NSAP должны контролироваться (распределяться) некоей сетевой ад­министрацией страны, где развертывается такая сеть, и схема нумерации должна быть локальной для данной страны. Если сама сеть управления локальна и не соединяется ни с какой другой сетью управления, то схема нумерации (отражаемая полем IDI) может быть выбрана произ­вольно.

Код страны в сетях передачи также должен регламентироваться определенным стандар­том. Им является стандарт ISO 3166, который содержит список трехзначных десятичных (двух­значных шестнадцатеричных) кодов, выделенных для каждой страны и используемых для запол­нения поля AFI.

В этой связи в данной задаче используется произвольный адрес страны: IDI = 001F, а также произвольный идентификатор AFI = 39. Адрес собственно области - 1, адрес домена - 1, т.е. поле адреса области АА = 00000000000000010001. Поле NSEL = 0. Эти адресные поля остаются постоянными для всех узлов сети SDH.

Системный идентификатор SID должен быть уникальным в данной области и должен отра­жать структуру используемой сети SDH. В данном примере используется следующая структура SID:

- поле с номером станции (Station - 3 байта),

- поле с номером отсека (места установки), где установлено оборудование (Room - 1 байт),

- поле с номером полки (Subrack - 2 байта) [2].

С учетом этого в таблице 5.1 помещены значения системных идентификаторов для различных узлов сети.

Таблица 5.1 – Значение системных идентификаторов для узлов сети

Узел A В С C1 D D1
SID 01010001 02010001 03010001 03020001 04010001 04020001
Узел E F
SID 05010001 06010001

5.2 Формирование сети синхронизации

Проблема синхронизации сетей SDH, с одной стороны, является частью общей проблемы синхронизации цифровых сетей (ИКМ и PDH). С другой стороны, SDH привносит свои дополнительные проблемы, вызванные использованием указателей и наличием плавающего режима размещения контейнеров в поле полезной нагрузки, что приводит фактически к определенной асинхронности его транспортировки. Последняя делает невозможным использование выделенного при демультиплексировании STM-N 2 Мбит/с потока для целей синхронизации. Однако технология SDH предлагает и свои специфические методы решения проблем синхронизации.

Если цифровая сеть локальна, то для нее проблемы синхронизации отсутствуют и в разумных пределах фактически не зависят от точности общего источника синхронизации. Проблема синхронизации возникает при объединении таких сетей в одну сложную сеть. Для ее синхронизации нужно предусмотреть, чтобы источники тактовой синхронизации отдельных сетей были одинаковыми и высокостабильными или была построена сеть синхронизации с единым высокостабильным источником тактовой синхронизации.

Синхронизация сетей PDH и SDH отличается своей спецификой. Целостность синхронизации сети PDH основана на использовании той же схемы иерархической принудительной синхронизации (по схеме «ведущий-ведомый»). В ней прохождение сигналов таймеров через узлы сети прозрачно, так как фазы сигналов Е1, используемых для синхронизации, жестко привязаны к фрейму PDH.

В сети SDH, восстанавливающей в каждом узле сигнал таймера из линейного сигнала STM-N, такая прозрачность теряется, а сигнал Е1, восстановленный из сигнала STM-N, для целей синхронизации не используется. В этой ситуации целостность синхронизации сети SDH лучше поддерживается при использовании распределенных первичных эталонных источников PRS, что позволяет устранить эффекты "каскадирования сигналов таймеров".

Внедрение сетей SDH, использующих наряду с привычной топологией точка-точка, кольцевую и ячеистую топологии, привнесло дополнительную сложность в решение проблем синхронизации, так как для двух последних топологий маршруты сигналов могут меняться в процессе функционирования сетей.

Сети SDH имеют несколько дублирующих источников синхронизации, которые можно разделить на два класса: внешние и внутренние.

Внешняя синхронизация:

- сигнал внешнего сетевого таймера, или первичный эталонный таймер PRC, определяемый в рекомендации ITU-TG.811, т.е. сигнал с частотой 2048 кГц;

- сигнал с трибного интерфейса канала доступа, определяемый в рекомендации ITU-TG.812, сигнал с частотой 2048 кГц, выделяемый из первичного потока 2048 кбит/с;

- линейный сигнал STM-N, или линейный таймер, сигнал 2048 кГц, выделяемый из линейного сигнала 155,52 Мбит/с или 4nx 155,52 Мбит/с.

Внутренняя синхронизация:

- сигнал внутреннего таймера (рассматриваемый как таймер ведомого локального узла LNC), определяемый в рекомендации ITU-TG.813, сигнал 2048 кГц;

Что касается точности сигналов внешней синхронизации, то она соответствует стандартам G.811, G.812. Точность сигналов внутренней синхронизации регламентируется производителями и для мультиплексоров SDH составляет обычно 4,6-10".

Учитывая, что трибы 2 Мбит/с, пришедшие из сетей SDH, отображаются в VC-12 и могут плавать в рамках структуры вложенных контейнеров, использующих указатели, их сигналы должны быть исключены из схемы синхронизации сети SDH. Реализуемая точность внутреннего таймера мала и, учитывая возможность накапливания ошибки в процессе так называемого "каскадирования сигналов таймеров", когда узел сети восстанавливает сигнал таймера по принятому сигналу и передает его следующему узлу, может быть использована только локально. В этом смысле наиболее надежными источниками синхронизации являются сигнал внешнего сетевого таймера и линейный сигнал STM-N.

Предусмотрено четыре режима работы хронирующих источников узлов синхронизации: первый - PRC, используется в мастер-узлах, второй - SRC, используется в тран­зитных и/или местных узлах, третий и четвертый также используются в транзитных и/или мест­ных узлах.

К-во Просмотров: 331
Бесплатно скачать Курсовая работа: Оптические цифровые телекоммуникационные системы