Курсовая работа: Организация проведения горных работ
Шишминский горизонт завершает разрез пермских отложений. С большим стратиграфическим разрывом на локальных участках месторождения установлены породы мезозоя и кайнозоя. Спорово-пыльцевой анализ указывает на меловой возраст некоторых пород Дуринского прогиба. Палеогеновые и неогеновые отложения распространены в долине р. Кама.
Четвертичные отложения развиты на всей площади Верхнекамского месторождения и представлены глинами, суглинками, супесями, песками и галечниками, в долинах рек встречается торф. Мощность четвертичных отложений колеблется от 0,7 до 28 м, в среднем составляет 10 м.
1.5 Тектоника
Верхнекамское месторождение расположено на стыке двух структурных элементов земной коры: Русской платформы и Уральской складчатой системы. Эти структуры обусловили возникновение и тектоническое развитие Соликамской впадины. По данным геофизики поверхность кристаллического фундамента залегает в этом районе на глубине 4–6 км, моноклинально погружаясь на восток под передовые складки Урала. В фундаменте выявлена сеть глубинных разломов с длительной историей развития. Осадочный чехол представлен в различной степени дислоцированными терригенно-карбонатными породами венда и верхнего палеозоя. На границе кунгурских отложений выявлена резкая дисгармоничная складчатость, имеющая, вероятно, надвиговую природу.
Южнее Соликамской впадины выявлен Чусовской тектонический покров, представляющий собой рифейский аллохтон на известняках пермского возраста. Аналогичной структурой на севере является Полюдов кряж с амплитудой горизонтального перемещения около 15 км. Геологической съемкой в долиной р. Яйва также выявлены разрывные дислокации надвигового типа, которые являются отражением Всеволодо-Вильвенского надвига. Таким образом, в обрамлении Соликамской впадины породы осадочного чехла испытывали активное воздействие со стороны Урала.
Идея покровного строения Уральской складчатой системы была высказана еще в 1927 г. Н. Фредериксом, но до сих пор не нашла своего отражения в тектонических построениях по Верхнекамскому месторождению. Наиболее близки к современной трактовке тектоничкского строения были представления А. А. Иванова, который, признавая роль региональных тектонических движений, не смог объяснить механизм передачи напряжений в Соликамскую впадину. По мнению В. И. Копнина, возвышенности дна (соляные банки) служат причиной образования положительных структур в соляной толще. С чем же тогда связать асимметрию этих структур? Если бы она была вызвана перераспределением статических нагрузок на соль, следовало бы ожидать разнонаправленную вергентность. Однако все складки имеют более крутой западный и пологий восточный склоны, что указывает на воздействие тангенциальных (горизонтальных) напряжений с востока на соляную толщу.
Соляная толща представляет собой линзообразное тело, залегающее среди терригенно-карбонатных пород. Подошвой соляной залежи является поверхность с загнутыми кверху краями наиболее высокие отметки зафиксированы в северной части месторождения у г. Чердынь. В южном направлении происходит плавное погружение подошвы под углом, измеряемым долями градуса. При длине в десятки километров на широте р. Яйва общая амплитуда погружения составляет около 500 м. Далее к югу отмечается плавное вздымание подошвы соляной залежи под углом 10′–15′ до района р. Косьвы. В широтном направлении наблюдается асимметричность солевого ложа, при этом восточное крыло впадины круче западного и достигает угла 1˚30′–2˚30′. Общая амплитуда погружения по широтному профилю соляного ложа составляет 220 м. В целом о нижней поверхности соляной толщи существует весьма разрозненные сведения, исходя из чего на локальных участках следует ожидать дополнительные усложнения тектонического строения. Кровля соляной толщи отличается большим структурным разнообразием, где появляется чередование положительных и отрицательных форм рельефа. Амплитуда смежных поднятий и прогибов достигает 300 м. Эти структуры , как правило, имеют субмеридиональное простирание и осложнены складчатостью различного порядка. Поднятия в разрезе имеют крутые западные склоны, отмечается увеличение мощности пластов в их сводах и уменьшение на крыльях.
Своды наиболее высоких поднятий срезаны подземной эрозией (Клестовское, Поповское). Размеры поднятий в плане составляют 5–25 км по длинной оси. Прогибы, разделяющие поднятия, характеризуются широким разнообразием форм и размеров. Наиболее крупный Камский прогиб достигает более 100 км в длину при ширине 10–12 км. Строение этих структур сложное: отмечаются переуглубленные участки, разделенные седловинообразными поднятиями.
Особое место и тектоническом строении Верхнекамского месторождения занимают структуры субширотного простирания–Дуринский и Боровицкий прогибы. Первый вскрыт до подошвы соляной залежи более чем двумя десятками скважин и достаточно хорошо изучен. Полученные в результате бурения и данные указывают на хорошую выдержанность подсолевых отложений, залегающие почти горизонтально. Поверхность соляной толщи резко расчленена с вертикальной амплитудой до 550 м. По А. А. Иванову происхождение Дуринской депрессии связано с эрозией галогенных отложений водотоками с Уральской суши в шешминское время, а тектоническим процессам отдана второстепенная роль. Аналогичный механизм усматривается в эрозионно-компенсационной модели Дуринского прогиба В.И. Копнина. Существуют и другие представления о возникновении и развитии этих прогибов. По В. И. Сапегину и В. И. Янину, зарождение этих структур произошло еще в период садки солей, а в позднешешминское время в результате нагнетания солей «произошли разрывные нарушения надсоляных толщ типа сбросов». Наряду с этим в зонах тектонических контактов соляных отложений покрывающими породами северных опускавшихся крыльев структур местами развивался соляной карст.
Анализ складчатости позволяет прогнозировать газодинамические явления, вести борьбу с потерями и разубоживанием калийных руд. Согласно исследованиям Б. М. Голубева тектоника калийной толщи выражена сложной системой ассиметричных складок нескольких порядков:
I–мелкая внутрипластовая и слоевая складчатость, которую в рудничной практике часто называют микроскладчатостью. Высота отдельных микроскладок 1–10 см, длина достигает 5–7 м, ширина –1 м.
II–складки, охватывающие отдельные пласты и слои. Высота таких складок 0,5–2,0 м, длина–10–40 м, ширина 3–15 м.
III–складки, охватывающие серию пластов (прослеживаются по ряду горных выработок). Высота складок 3–12 м, длина 300–350 м, ширина 20–100 м.
Складки всех порядков распространены неравномерно, наиболее интенсивная складчатость наблюдается в антиклинальных складках высших порядков. Складки группируются в складчатые зоны, между которыми находятся области сравнительно спокойного залегания. Внутрипластовая и слоевая складчатость дисгармоничны. Мощность отдельных прослоев возрастает от крыльев к замкам антиклиналей, в плане простирание складок близко к меридиональному. Большинство складок имеет асимметричную форму с более крутым западным крылом и пологим восточным. Эти особенности внутрисоляной складчатости указывают на воздействие Уральской складчатой системы на отложения Соликамской впадины.
1.6 Гидрогеология месторождения
Вся надсолевая толща Верхнекамского месторождения насыщена водой, для которой верхний соляной пласт является водоупором (или кровлей водозащитной толщи).
Отдельные литолого-стратиграфические элементы подсолевого комплекса имеют различные гидрогеологические свойства, поэтому выделяются воды четвертичных отложений, пестроцветной, терригенно-карбонатной и соляно-мергельной толщ, иногда выделяется самостоятельно рассольный горизонт. Подземные воды выявлены также ниже соляной залежи в глинисто-ангидритовой толще и ниже. По гидрохимическому типу воды различны и отличаются по степени минерализации.
Воды четвертичных отложений приурочены к флювиогляциальным отложениям водоразделов и аллювию. Минерализация составляет 0,5–30 г/л.
Воды третичных отложений развиты локально в отложениях р. Камы и значительной роли не играют.
Воды пермских отложений распространены наиболее широко, они образуют отдельные, плохо сообщающиеся между собой водоносные горизонты.
Воды пестроцветной толщи (ПЦ) пресные с преобладанием гидрокарбоната кальция. Минерализация – 0,5–50 г/л.
Терригенно-карбонатная толща (ТКТ) наиболее водоносна. Коэффициент фильтрации достигает более 40 м/сут. По составу воды гидрокарбонатно-кальциевые, сульфатно-кальциево-магниевые с минерализацией 0,5–2,5 г/л. В нижней части ТКТ коэффициент фильтрации достигает 200 м/сут, а минерализация до 200 г/л.
Воды соляно-мергельной толщи (СМТ) в верхней части имеют гидрокарбонатно-кальциевый состав с минерализацией 0,2–1 г/л, в нижней части–хлоридно-натриевые с минерализацией 5–300 г/л. Водообильность значительно ниже, чем в ТКТ, вследствие большого количества пластичных глинистых пород.
В кровле соляной залежи местами залегает рассольный горизонт. Формирование этих рассолов происходит за счёт вод, проникающих к соляной залежи и растворяющих ее. По составу рассолы хлоридно-натриевые с небольшой примесью сернокислого и двууглекислого кальция, хлористого магния, сероводорода и брома. Минерализация составляет 320–340 г/л.
Воды глинисто-ангидритовой толщи залегают в подсолевых отложениях. Воды напорные. Состав хлоридно-натриевый, минерализация достигает 300 г/л.
Расположение зон с аномальными особенностями в строении ВЗТ на шахтном поле СКРУ-2 определено ОАО ВНИИГ на основании комплексного анализа научно-исследовательских, геологических и геофизических материалов.
На шахтном поле СКРУ-2 активно производятся научно-исследовательские работы, геофизические и гидрогеологические наблюдения.
1.7 Опасность по взрыву газа и пыли
Добыча калийных солей сопровождается выделением в горные выработки ядовитых и горючих газов. Наибольшую опасность представляют горючие газы метан и его гомологи, водород, которые в смеси с воздухом могут взрываться. Газоносность пород по горючим газам (метан + водород) колеблется от 0 до 1,5 – 1,7 м3 /м3 пород. Относительная газообильность выработок не превышает 0,15-0,2 м3 /м3 горной массы на сильвинитовых пластах.