Курсовая работа: Основные этапы и цели моделирования
Аналитическое моделирование - процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:
- аналитическими, когда хотят получить в общем виде явные зависимости для искомых характеристик;
- численным, когда, не умея решить уравнение в общем виде, получают числовые результаты при конкретных исходных данных;
- качественный, когда не умея решить уравнение, находят некоторые свойства решений (например, стойкость и др.).
Аналитический метод связывает явной зависимостью исходные данные с искомыми результатами. Это возможно для сравнительно простых систем.
Численные методы позволяют исследовать более широкий класс систем. Они эффективны при использовании ЭВМ. Для построения аналитических моделей существует мощный математический аппарат - алгебра, функциональный анализ, разностные уравнения, теория вероятности, математическая статистика, теория массового обслуживания и т.д.
Имитационное моделирование используется, когда для описания СС недостаточно аналитического моделирования. В имитационной модели поведение компонент сложной системы (СС) описывается набором алгоритмов, которые затем реализуют ситуации, которые возникают в реальной системе. Алгоритмы, которые модулируют по исходным данным (сходное состояние СС) и фактическим значением параметров СС позволяют отобразить явления в S и получить информацию о возможном поведении СС. На основе этой информации исследователь может принять соответствующее решение. Имитационная модель (ИМ) СС рекомендуется в следующих случаях :
1) нет законченной постановки задачи исследования и идет процесс познания объекта моделирования. ИМ - способ изучения явления.
2) математические средства аналитического моделирования сложные и громоздкие и ИМ дает наиболее простой способ.
3) кроме оценки влияния параметров СС необходимо наблюдать поведение компонент СС некоторый период.
4) ИМ - единственный способ исследования СС, то есть невозможны наблюдения в реальных условиях за объектом.
5) необходимо контролировать протекание процессов в СС, уменьшая и ускоряя скорость их протекания в ходе имитации.
6) при подготовке специалистов и освоении новой техники.
7) изучение новых ситуаций в СС, проверка новых стратегий и принятие решений перед проведением экспериментов на реальной S.
8) предвиденье узких мест и трудностей в поведении СС при введении новых компонент.
ИМ - наиболее распространенный метод анализа и синтеза СС.
Натурное моделирование - исследование на реальном объекте и обработке результатов экспериментов на основе теории подобия. Научный эксперимент, комплексные исследования, производственный эксперимент (исследуется широкая автоматизация, вмешательство в управление реальным процессом, создание критических ситуаций).
Физическое моделирование - на установках, которые сохраняют природу явлений при физическом подобии.
Кибернетическое моделирование - нет непосредственно физического подобия. Отображается S как "черный ящик" рядом входов и выходов.
Из всего вышесказанного и условий задания можно определить следующий вид модели:
- В зависимости изучаемых процессов: стохастическая – неизвестно сколько будет находиться деталей в накопителе при повторной обработке (известно, что если больше 3-х – активизируется второй станок); динамическое – необходимо узнать как система будет функционировать не в конкретный момент времени а на всем промежутки обработки 500-а деталей; непрерывное – из задания следует, что рассматривается автоматизированный конвейер.
- В зависимости от формы представления: вымышленное (абстрактное) – слишком дорого для студента материальное создание; к данной моделе применимы почти все варианты абстрактного моделирования (математическое, символьное т.д.) так, что нет смысла перечислять все.
Выбор математической схемы
Математическая схема - это участок при переходе от содержательного к формальному описанию процесса функционирования системы с учетом действия внешней среды.
То есть имеет место связка: "описательная модель - математическая схема - математическая (аналитическая и (или) имитационная) модель".
Каждая конкретная система S характеризуется набором свойств, то есть величин, отображающих поведение моделируемого объекта (реальной S) и учитывающих условия ее функционирования во взаимодействии с внешней средой (системой) Е.
При построении ММ системы решаются вопросы о полноте и упрощении. Полнота модели реализуется выбором границы " система S - среда Е ". Упрощение модели - выделение основных свойств S и отбрасывание второстепенных свойств (зависит от цели моделирования).
МАТЕМАТИЧЕСКИЕ СХЕМЫ ОБЩЕГО ВИДА
Модель S можно представить множеством величин, описывающих процесс функционирования реальной системы S.
Эти величины создают в общем случае четыре подмножества :