Курсовая работа: Основные характеристики пусковых систем

Для электрической цепи электродвигателя постоянного тока последовательного возбуждения, к которому приложено напряжение аккумуляторной батареи, согласно второму закону Кирхгофа можно записать:

, (1.3)

где — напряжение аккумуляторной батареи;

— сопротивление подводящих проводов;

— сопротивление обмоток электродвигателя стартера;

— переходное сопротивление в месте контакта щеток и коллектора;

— сопротивление электрической цепи, зависящее от , и .

Подставим значение обратной ЭДС, полученное из последнего уравнения в формулу, определяющую обратную ЭДС, и выразив из нее частоту вращения, получим:

. (1.4)

Из полученной формулы видно, что частота вращения якоря тем больше, чем больше напряжение аккумуляторной батареи и чем меньше падение напряжения в цепи стартера и величина магнитного потока. Используя зависимости между частотой вращения якоря и моментом стартера, можно построить зависимость характеристик в функции тока стартеа (рис.1.1).

Рисунок 1.1 - Характеристики стартера в функции тока стартера.

Примем, что напряжение аккумуляторной батареи уменьшается с увеличением нагрузки линейно. Очевидно, что ток стартера будет нарастать от нуля до максимального значения, которое возникает при полном затормаживании вала якоря, когда частота вращения обратная ЭДС равны нулю. Этот ток называют током полного торможения (). Напряжение на стартере будет меньше напряжения аккумуляторной батареи на величину падения напряжения в подводящих проводах (). Известно, что падение напряжения на щетках () можно принять постоянным. Оставшееся напряжение распределится между падением напряжения на обмотках электродвигателя () и обратной ЭДС (). Так как при токе , а при I=0, то получим график, показанный на рис.1.1. Магнитный поток стартера Ф при увеличении тока изменяется соответственно кривой намагничивания. При малых нагрузках он пропорционален току, а при больших приближается к магнитному потоку насыщения и растет очень медленно. Поэтому при больших нагрузках его можно считать постоянным. Тогда электромагнитный момент сначала будет расти по параболе, а при больших нагрузках - пропорционально току. Крутящий момент на валу стартера будет меньше электромагнитного на величину механических потерь .

Значение тока , при котором , соответствует режиму холостого хода. В этом режиме момент на валу стартера равен нулю и поэтому частота вращения якоря максимальна. Затем при малых нагрузках частота вращения уменьшается приблизительно по гиперболе, так как магнитный поток увеличивается линейно, а обратная ЭДС уменьшается. В зоне больших нагрузок, где магнитный поток можно считать постоянным, график уменьшения частоты вращения приближается к абсциссе. В режиме полного торможения - зона токов, меньших тока холостого хода, зависимости выходят за пределы режима работы стартера (пунктирные линии на рис.1.1). Механическая мощность на валу стартера определяется выражением:

. (1.5)

В режиме холостого хода, когда , и в режиме полного торможения, когда п = 0, механическая мощность стартера равна нулю. Кривая Р=f(I) идет вверх от нуля при к максимуму () при 1=0,5, а затем снова снижается к нулю при 1=.


2. РАСЧЕТНАЯ ЧАСТЬ

2.1 Выбор стартера

2.1.1 Расчёт моментов сопротивления

Используя зависимости относительно момента сопротивления от вязкости масла и скорости прокручивания, расчёт моментов сопротивления двигателя ведётся в следующем порядке

М= (2.1)

где Pт – среднее значения давления трения для данного типа двигателя.

Находим давление среднего трения P для карбюраторного рядного четырехцилиндрового двигателя, 1000 см, t=-25С

М=

Таблица 2.1 – Зависимость

Тип двигателя Значения при вязкости, сст
500 1000 2000 3000 4000 6000 8000 10000 12000
Карбюраторный
рядный четырехцилиндровый 0,64 0,78 1,0 1,22 1,36 1,66 1,8 2,07 2,1

Строим график m=f(v) (гр.1)

Рисунок 2.1 – Зависимость относительного момента сопротивления двигателя от вязкости масла

Определяем по графику 1 значение mv для t= -25°С. Момент сопротивления двигателя при n=const равенMν = M2000 mν ; (2.2)

К-во Просмотров: 462
Бесплатно скачать Курсовая работа: Основные характеристики пусковых систем