Курсовая работа: Основные области применения компьютеров
То же самое программное обеспечение, которое применяется для организации учета в торговле, можно использовать и для других целей, например для контроля наличия комплектующих изделий на заводской сборочной линии, учета сплавляемых по реке бревен и др.
Электронные деньги. Одной из важнейших составляющих информатизации становится переход денежно-кредитной и финансовой сферы к электронным деньгам.
Основные направления использования электронных денег следующие:
Торговля без наличных. Оплата производится с использованием кредитных карточек. Имея вместо наличных денег кредитную карточку, покупатель при любой покупке расплачивается не наличными, а автоматически снимает со своего счета в банке нужную сумму денег и пересылает ее на счет магазина.
Система торговли без наличных POS (англ. Points of Sale System - система кассовых автоматов) выполняет следующие функции: верификацию кредитных карточек (т.е. удостоверение их подлинности); снятие денег со счета покупателя; перечисление их на счет продавца.
POS — наиболее массовая и показательная ветвь системы электронных денег. Она способна также обнаруживать малейшие хищения наличных денег и товаров.
Сведения на кредитную карточку наносятся методом магнитной записи. В каждую кредитную карточку вставлена магнитная карта — носитель информации.
На магнитную карту заранее записываются следующие данные: номер личного счета; название банка; страна; категория платёжеспособности клиента; размер предоставленного кредита и т.д.
Разменные автоматы. Они устанавливаются банками только для своих клиентов, которым предварительно выданы кредитные карточки. Клиент вставляет в автомат кредитную карточку и набирает личный код и сумму, которую он желает иметь наличными. Автомат по банковской сети проверяет правильность кода, снимает указанную сумму со счета клиента и выдает её наличными. Часто несколько банков объединяются и создают общую сеть разменных автоматов.
Встречные зачёты. По всему миру активно внедряются электронные системы потребительского кредита и взаимных расчетов между банками по общему итогу. Такие системы реализуются в виде автоматических клиринговых (англ. clearing — очистка) вычислительных сетей ACH (Automated Clearing House). По сети идут не только банковские документы, но и информация, важная для принятия ответственных финансовых решений.
Применение компьютеров в сельском хозяйстве.
Имея компьютер, фермер может легко и быстро рассчитать требуемое для посева количество семян и количество удобрений, спланировать свой бюджет и вести учет домашнего скота. Компьютерные системы могут планировать севооборот, рассчитывать график полива сельхозкультур, управлять подачей корма скоту и выполнять много других полезных функций. На наших глазах происходит технологическая революция в сельском хозяйстве — компьютеры и индивидуальные микродатчики позволяют контролировать состояние и режим каждого отдельного животного и растения. Это высвобождает значительные материальные и людские ресурсы, резко улучшает качество жизни человека.
3. Роль применения отечественных компьютеров в атомной и космической программах СССР
Решение задач военно-технической области с самого начала было одной из главных областей применения компьютеров. Постановка, алгоритмизация и программирование этих задач для универсальных машин стали предметом исследований и разработок ведущих школ прикладной (вычислительной) математики в СССР.
Основоположником советской ядерной программы следует считать академика В.И. Вернадского. Он еще в 1910 г., понимая как никто другой глубинный смысл радиоактивности, открытой Беккерелем, представил конкретную программу геологического поиска урановых руд и овладения энергией атомного распада.
Начало советской ядерной программы относится к 1943 г., когда по решению ГКО было создано первое в стране научно-исследовательское учреждение, призванное заниматься атомной проблемой, - Лаборатория измерительных приборов № 2 АН СССР (ЛИПАН - ныне Российский научный центр "Курчатовский институт").
Ясно, что для сокращения числа возможных вариантов было необходимо применять математические основы моделирования ядерных взрывов, прежде всего для расчетов мощности ядерных зарядов. Такие расчеты были организованы в ЛИПАН С.Л. Соболевым и в Отделении прикладной математики МИАН (ныне ИПМ им. М.В. Келдыша РАН) А.А. Самарским, еще до появления первых отечественных компьютеров, с помощью бригад расчетчиков на настольных счетно-клавишных машинах. Уже тогда они предложили эффективные алгоритмы численного решения уравнений математической физики, которыми описывались процессы ядерного взрыва.
Первые программы для машины "Стрела", реализующие алгоритмы численного решения задач моделирования ядерного взрыва, были разработаны в ИПМ АН СССР. Хотя производительность и, главное, надежность этой машины для решения таких задач не были достаточными, первые задачи были решены благодаря виртуозной работе программистов.
В 1961 г. на Новой Земле было произведено атмосферное испытание самой мощной в истории термоядерной бомбы мощностью 58 мегатонн тротилового эквивалента, а в 1962 г. СССР произвел на Новой Земле свое последнее воздушное испытание ядерного оружия. После этого основным методом испытаний ядерного оружия стали математические модели или подземные ядерные взрывы.
Также в этой сфере компьютеры активно использовались для расчетов реакторов атомных энергоблоков. Наиболее весомый вклад в этом направлении был сделан Г.И. Марчуком в 1953-1962 гг. во время его работы в Физико-энергетическом институте (ФЭИ) в г. Обнинске. Для решения задач расчета атомных реакторов тогда применялась машина М-20. Математической основой были приближенные аппроксимации уравнения Больцмана в приложениях к решению нейтронных задач.
Наконец, нельзя не сказать о применении универсальных вычислительных машин для глобального моделирования климата Земли. Модели так называемой "ядерной зимы" были разработаны в ВЦ АН СССР В.В. Александровым и Г.Л. Стенчиковым под руководством академика Н.Н. Моисеева. Расчеты, выполненные с помощью машины БЭСМ-6, показали, что ждет человечество, если случится ядерная катастрофа. Они послужили серьезным предостережением для политиков и в США, и в СССР в период "холодной войны" и стимулом для переговоров о сокращении запасов ядерного оружия, запрещении ядерных испытаний в атмосфере, открытом космосе и под водой.
Советская космическая программа.
Институт прикладной математики АН СССР, созданный М.В. Келдышем, был инициатором и основным разработчиком программного обеспечения для расчетов траекторий баллистических ракет и космических аппаратов, необходимых при выполнении всех космических запусков искусственных спутников Земли. Для проведения таких расчетов в ИПМ, в Центре управления полетами и других организациях, связанных с космической программой, применялись универсальные цифровые вычислительные машины М-20, затем БЭСМ-6 и многомашинная вычислительная система АС-6. В ИПМ алгоритмы и программы этих расчетов разрабатывались под руководством академика Д.Е. Охоцимского.
Когда в свое время журналисты писали о создании ракетно-ядерного щита страны, они называли аббревиатуру "3К" - Курчатов, Королев, Келдыш. Академик Б.Е. Патон, оценивая важнейшее значение создания и применения компьютеров для ядерной и космической программ, говорил, что справедливо было бы назвать и академика С.А. Лебедева, создавшего компьютеры, применявшиеся в этих программах.
Универсальные вычислительные машины применялись не только для баллистических расчетов, но и для проектирования самих ракет-носителей в КБ С.П. Королева и В.Н. Челомея, главного конструктора ракет военного назначения.
Системы управления для ракет-носителей разрабатывало НПО "Хартрон", г. Харьков (генеральный директор В.Г. Сергеев). Главным конструктором бортовых компьютеров для ракетных комплексов был А.И. Кривоносов.
Для отработки программно-математического обеспечения так называемого "электронного пуска" ракеты в НПО "Хартрон" использовался инструментальный комплекс на базе БЭСМ-6, который моделировал полет ракеты и реакцию системы ее управления на воздействие основных возмущающих факторов и обеспечивал эффективный и полный контроль полетных заданий. Системы управления, разработанные НПО "Хартрон", поставлялись ЮМЗ.
4. История создания автоматизированных систем управления в CCCP
В нашей стране разработка и внедрение автоматизированных систем управления (АСУ) началось в 50 годах двадцатого века. Однако в это время все разработки наталкивались на существенный сдерживающий фактор - дороговизну электронных вычислительных машин, и они первоначально создавались только для целей ПВО и здесь мы далеко обогнали страны Запада.
Спустя 10 лет в 1960 году, впервые в СССР, на экономический факультете Санкт-Петербургского государственного технического университета (Политехнического института) была начата подготовка инженеров-экономистов по созданию и внедрению автоматизированных систем управления производством по специальности "Организация механизированной обработки экономической информации". В 1961 году организована кафедра автоматизации управления производством. В 1964-м при этой кафедре была создана первая в стране отраслевая научно-исследовательская лаборатория автоматизированных систем управления производством.
Еще в начале 1960-х годов академик В.М. Глушков предложил правительству СССР создать Общегосударственную автоматизированную систему управления экономикой страны (ОГАС), для чего, по его оценкам, требовалось как минимум 15-20 лет и 20 млрд. тогдашних рублей, однако выигрыш стоил того: ОГАС давала реальный шанс построить самую эффективную экономику в мире.