Курсовая работа: Основы расчёта оболочек
Условие задачи: Построить эпюры безмоментных напряжений и для сферического сосуда (рис. 1), полностью заполненного жидкостью.
Исходные данные:
Радиус оболочки: м;
Плотность жидкости (окислитель):
;
Толщина стенки оболочки:
.
Рис. 1. Схема оболочки
Выполнение расчёта
1. Выводы расчётных зависимостей для верхней полусферы
В верхней полусфере отсечём часть оболочки нормальным коническим сечением с углом при вершине конуса и составим уравнение равновесия отсеченной части оболочки (рис. 2):
,
где – равнодействующая сил давления жидкости на стенку оболочки в проекции на
вертикальную ось.
Жидкость действует на стенку оболочки переменным давлением. Равнодействующую сил давления жидкости на вертикальную ось определим по формуле:
,
где – объём цилиндра; – объём шарового сегмента, рис. 2.
,
где - высота столба жидкости в расчётном сечении.
Рис. 2. Расчётная схема
Получаем:
.
Из уравнения равновесия после подстановки выражения для силы имеем:
.
Отсюда меридиональное напряжение:
.