Курсовая работа: Отношения эквивалентности и толерантности и их свойства

Введение

В обыденной речи мы часто говорим об одинаковости (о равенстве) каких-то объектов (предметов, множеств, абстрактных категорий), не заботясь о надлежащем уточнении смысла, который мы вкладываем в слово "одинаковый". В главе первой попробуем выявить и раскрыть понятие "одинаковости", определим термины "эквивалентность" и "отношение эквивалентности".

Не менее важной является ситуация, когда нам приходится устанавливать сходство объектов. Если одинаковость объектов означает их взаимозаменимость в некоторой ситуации, то сходство – это частичная взаимозаменимость, т.е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями, с допустимым риском. Во второй главе попробуем раскрыть понятие "толерантности" на базе таких терминов, как "одинаковость" и "сходство" объектов.

А в третьей главе подробнее рассмотрим применение понятий отношений эквивалентности и толерантности в различных областях знаний и практики человека.


Реферат

Курсовая работа содержит: 41 страница, 3 источника, 1 приложение.

Ключевые слова: отношение эквивалентности, отношение толерантности, одинаковость, сходство, взаимозаменимость, классы эквивалентности, пространство толерантности, классы толерантности, предкласс, базис.

Объект исследования: отношения эквивалентности и толерантности.

Предмет исследования: свойства отношений эквивалентности и толерантности.

Цель работы: используя рекомендуемую литературу рассмотреть понятия отношений эквивалентности и толерантности; рассмотреть приложения этих понятий в различных областях знаний и практики человека.

Методы исследования: методы теории множеств и теории отношений.

Задачами курсовой работы являются: изучить свойства отношений эквивалентности и толерантности и их приложения в конкретных областях знаний.


1. Отношение эквивалентности

1.1 Определение и примеры

1.1.1 Определение

Систему непустых подмножеств множества мы будем называть разбиением этого множества , если

1) и

2) при .

Сами множества называются при этом классами данного разбиения.

1.1.2 Определение

Отношение на множестве называется эквивалентностью (или отношением эквивалентности ), если существует разбиение множества такое, что соотношение выполняется тогда и только тогда, когда и принадлежат некоторому общему классу данного разбиения.

Пусть – разбиение множества . Определим, исходя из этого разбиения, отношение на : , если и принадлежат некоторому общему классу данного разбиения. Очевидно, отношение является эквивалентностью. Назовем отношением эквивалентности, соответствующим исходному разбиению.

Например, разбиение состоит из подмножеств множества , содержащих ровно по одному элементу. Соответствующее отношение эквивалентности есть отношение равенства . Наконец, если разбиение множества состоит из одного подмножества, совпадающего с самим , то соответствующее отношение эквивалентности есть полное отношение: любые два элемента являются эквивалентными.

Пустое отношение (на непустом множестве!) не является эквивалентностью.

Мы подошли к эквивалентности через понятие взаимозаменимости. Но что значит, что два объекта и взанмозамепимы в данной ситуации? Это всегда можно понимать так, что каждый из них содержит всю информацию о другом объекте, небезразличную в данной ситуации. Это утверждение означает только то, что взаимозаменимость объектов есть совпадение признаков, существенных в данной ситуации.

Например, пусть мы считаем одинаковыми автомобили, выпущенные в одной и той же серии одним и тем же заводом. Тогда, разобрав один экземпляр "Волги", мы в принципе можем составить комплект рабочих чертежей, который годится для выпуска однотипных "Волг". Однако, изучив один экземпляр "Волги", мы не можем угадать окраску кузова или характер вмятин на бампере у других односерийных экземпляров.

Когда мы выбираем из комплекта одну шахматную фигуру, то мы знаем, куда ее можно поставить в начальной позиции и как ходят, все взаимозаменяемые с ней, т.е. одноименные и одноцветные, фигуры.

Пусть теперь задано разбиение множества . Выберем в каждом множестве некоторый содержащийся в нем элемент . Этот элемент мы будем называть эталоном для всякого элемента , входящего в то же множество . Мы будем – по определению – полагать выполненным соотношение . Так определенное отношение назовем отношением "быть эталоном ".

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 155
Бесплатно скачать Курсовая работа: Отношения эквивалентности и толерантности и их свойства