Курсовая работа: Оценка влияния факельных установок на окружающую среду
В выбросах факельных установок содержатся тяжелые металлы – ванадий и никель. Никель относится ко II классу опасности – токсичные вещества, ванадий – к III классу опасности – слаботоксичные вещества.
Поступая на поверхность почвы, тяжелые металлы накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции (Орлов Д.С., 2002).
Тяжелые металлы большей частью концентрируются в поверхностном горизонте почв 0—10—20 см, где они присутствуют в составе твердых частиц, гумусового вещества, в почвенном растворе (Луканин В.Н., 2001).
Тяжелые металлы могут блокировать реакции с участием фермента, что приводит к уменьшению или прекращению его каталитического действия. Никель может полностью прекращать действие декарбоксилазы и уменьшать эффективность Энолазы, АТФ-азы, Аргинилазы, Карбоксилазы, Дегидрогеназы (Черников В.А., 2000).
Тяжелые металлы существенно влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они вызывают микробостатический эффект, способствуют проявлению мутагенных свойств (Орлов Д.С., 2002).
Тяжелые металлы претерпевают в почве химические превращения, в ходе которых их подвижность изменяется в очень широких пределах. Наибольшую опасность представляют подвижные формы, наиболее доступные для растений. Подвижность тяжелых металлов существенно зависит от почвенно-экологических факторов, основные среди которых – содержание органического вещества, кислотность почвы, окислительно-восстановительные условия, плотность почвы и т.д. (Черников В.А., 2000).
2.3 Влияние выбросов факельных установок на растительность
Индикаторами загрязнения атмосферы являются растительные сообщества.
Загрязняющие вещества поступают в растения через устьица и корни. Величина отверстия устьиц и интенсивность света влияют на процесс повреждения растений малыми газовыми примесями. Они могут вызывать «видимые» повреждения (некроз тканей), которые подразделяются на острые и хронические. В противоположность «видимым» повреждениям возникло понятие «невидимый ущерб, наносимый токсическими газами». «Невидимые повреждения» проявляются в снижении фотосинтезной активности, в преждевременном старении, снижении роста и более сильной подверженности к вторичным повреждениям. Такого рода растения могут накапливать токсины, и они опасны для животных. Токсические газы – причина серьезных физиолого-биологических нарушений в ассимиляционных органах: окислительное разрушение клеточных мембран и в связи с этим потеря водоудерживающей способности; нарушение строения хлоропластов и структур клетки; активизация дыхания и окислительных ферментов (но дыхание быстро сменяется угнетением); разрушение пигментов (преимущественно хлорофилла) (Большаков В.А., 1994).
Поглотительная способность насаждений зависит от состава пород, полноты, бонитета, возраста, ассимиляционной поверхности крон деревьев, длительности вегетации. Наибольшей поглотительной способностью обладают древесные растения, за ними по мере снижения идут местные сорные травы, цветочные растения и газонные травы (Чернышенко О.В., 2002).
В зонах интенсивного загрязнения факельных установок у хвойных пород деревьев отмечается усыхание ветвей нижнего порядка и суховершинность. По мере приближения к факелу сомкнутость крон древесной растительности уменьшается. Так, по исследованиям Т.Е.Старковой и М.Т.Васбиевой, на расстоянии 2000 м от факела сомкнутость крон в среднем составила 47%, а в зоне интенсивного загрязнения – около 33 %.
Хвойные породы острее реагируют на близость к факелу. Так, по направлению господствующих ветров вблизи факельной установки подрост ели сибирской и пихты сибирской отсутствует. Состояние подроста лиственных пород по мере приближения к факелу ухудшается (признак – прирост по высоте) (Старкова Т.Е., Васбиева М.Т., 2006).
Сосна обыкновенная - умеренно чувствительное к действию SO2 растение. Сосна не типична для зон с повышенной концентрацией SO2 в воздухе, сернистый ангидрид лимитирует ее распространение.
Синдром хлоротической карликовости (СХК) вызывается двумя газами – озоном и сернистым ангидридом. Эта болезнь характеризуется светло-зеленым цветом новых иголок, которые затем становятся пятнистыми и желтыми, а позднее закрученными с обожженными кончиками. Старые иглы опадают раньше, чем появляются новые. Деревья сильно угнетены и обычно погибают.
Кроме этих растений, к воздействию атмосферной двуокиси серы чувствительны: тополь гибридный, люцерна, ячмень, гречиха, тыквы, сосна Банкса, ель европейская и другие.
Токсичность NO2 в пять раз меньше токсичности SO2 и воздействие 6 млн-1 NO2 в течение 4-8 часов вызывает повреждение нескольких видов растений, включая горох, кустовую фасоль и люцерну (Мэннинг У.Дж., Федер У.А., 1985).
Характерный признак действия на растения этого фитотоксиканта – периферическое повреждение листьев, скручивание их вовнутрь, некроз и отмирание листовых пластинок (Большаков В.А., 1994).
Озон и пероксоацилнитраты (ПАН) – сильные окислители. Они оказывают влияние на метаболизм, рост и энергетические процессы в растениях, ингибируя многие ферментативные реакции, например, синтез гликолипидов, полисахаридов стенок клетки, целлюлозы и т.д. Озон и ПАН также влияют на процесс фотосинтеза.
Чувствительные виды растений уже после часовой обработки озоном при концентрации 0,05 – 0,1 мг/м3 проявляются признаки угнетения (белая или коричневая крапчатость). Озон также изменяет структуру клеточных мембран, вследствие чего можно наблюдать серебристую пятнистость листьев. При воздействии озона также окисляются пигменты и листья обесцвечиваются. На глянцевом слое кожицы листьев и игл проявляются трещины, и лист становится хрупким. Кроме того, в трещинах могут прорастать грибные споры, проникающие затем вглубь листа и разрушающие его. Этот инфекционный процесс является одной из причин гибели лесов.
ПАН становится физиологически активным только при освещении. Фотолитически он распадается на и пероксоацетил-радикал, который окисляя, разрушает пигменты растений.
Фотохимические окислители оказывают наибольшее воздействие на салатные культуры, бобы, свеклу, злаки, виноград и декоративные насаждения. Сначала на листьях образуется водное набухание. Через некоторое время нижние поверхности листьев приобретают серебристый или бронзовый оттенок, а верхние становятся пятнистыми с белым налетом. Затем наступает быстрое увядание и гибель листьев (http://www.bibliofond.ru/view.aspx?id=118117).
Важным биоиндикатором загрязнения являются эпифитные лишайники. В зоне интенсивного загрязнения разнообразие эпифитных лишайников резко сужается. В исследованиях Т.Е.Старковой и М.Т.Васбиевой в непосредственной близости от факела произрастал только один вид лишайников – пармелия бородавчатая. Наблюдалось отмирание слоевищ и наличие некротических пятен пармелии бородавчатой. В зоне с высокой повторяемостью ветров эпифитные лишайники сохраняются только со стороны ствола, защищенной от ветра по отношению к факелу. Ствол дерева служит механическим барьером для экотоксиканотов (Старкова Т.Е., Васбиева М.Т., 2006).
При повышении концентрации SО2 в воздухе листоватые и кустистые лишайники исчезают первыми (Мэннинг У.Дж., Федер У.А., 1985).
По мере приближения к факелу наблюдается уменьшение высоты клевера лугового, количество стеблей на одно растение уменьшается с девяти до семи.
Сельскохозяйственные посевы, находящиеся в близи факельных установок, также испытывают негативное влияние загрязнения.
На расстоянии 2000 м от промышленного объекта при повторяемости ветров 15 % ухудшается структура урожайности сельскохозяйственных культур: растения яровой пшеницы имеют более короткий колос, низкую озерненность и, соответственно, меньшую продуктивность колоса (Старкова Т.Е., Васбиева М.Т., 2006).
В нашей климатической зоне, согласно исследованиям М.С.Мартюшевой, в непосредственной близости к факельным установкам произрастают Ежа Сборная, Мятлик луговой, Пырей ползучий, Горошек мышиный, Клевер розовый, Чина луговая, Одуванчик лекарственный, Осот полевой, Нивяник обыкновенный. Именно эти растения проявляют наибольшую резистентность к факельным выбросам (Мартюшева М.С., 2008).
Повышение освещенности и температуры ведет активизации физиологических процессов растений, увеличению поглощения газов и повреждения листьев.
Исследования по изучению механизмов поглощения газа позволили установить, что в растениях они не только накапливаются в листьях и хвое, но и подвергаются транслокации по органам, а также удаляются в почву и корни (Гудериан Р., 1979).
Из почвы растения поглощают бенз(а)пирен, тяжелые металлы.