Курсовая работа: Печи для автогенной плавки меди
(1)
где А — производительность агрегата по проплавляемой шихте, т/ч;
— соответственно теплогенерационные и теплообменные составляющие тепловых эквивалентов шихтовых материалов и продуктов плавки, кДж/кг;
n — коэффициент, равный отношению массы штейна к массе переплавляемой шихты;
Qш , Qд — соответственно теплопотребление шихты и дутья, идущего на ее окисление, кДж/кг шихты;
Qпот — потери тепла через ограждение печи, кВт.
Из уравнения (1) следует, что интенсивность теплообмена в рабочем пространстве печи (величина теплового потока ) будет равна, кВт
Qп =0,28A(-n) (2)
Ее величина должна соответствовать технологическим параметрам процесса, которые выбираются таким образом, чтобы в печи были созданы условия для наиболее полного разделения продуктов плавки. Известно, что повышение средней температуры в зоне технологического процесса с одной стороны ведет к снижению вязкости шлака и тем самым способствует ускорению разделения продуктов плавки, с другой — к увеличению растворимости штейна в шлаке и (в окислительной среде) к росту так называемых химических потерь меди со шлаком.
В случае переработки конкретного сырья в зоне окисления сульфидов, как правило, стремятся поддерживать оптимальную температуру, значение которой определяется экспериментально. Так как соединения, полученные в результате окисления сульфидов, являются одновременно продуктами плавки, то их действительная температура должна быть равна средней температуре зоны технологического процесса. Из определения теплового эквивалента шихтовых материалов следует, что это условие соблюдается, когда поток тепла, отводимого от продуктов окислительных реакций, достигает своего максимального значения и будет равен, кВт
(3)
где Qх.ш Qх.пр — соответственно теплота сгорания шихты и продуктов плавки, кДж/кг.
Расчеты величин, входящих в уравнение (2), производятся по данным материального и теплового балансов плавки. Для приближенных расчетов могут быть использованы значения тепловых эквивалентов шихты и штейна, кВт
(4)
где S, Сu — соответственно содержание серы и меди в шихте, %;
Т0 — заданное значение средней температуры в зоне технологического процесса, К;
— соответственно начальные температуры шихты и дутья, К;
О2 — содержание кислорода в дутье, %.
Физический смысл рассчитываемой по формуле (3) величины заключается в том, что она показывает, какое количество тепла за единицу времени должно быть отведено в процессе теплообмена от продуктов окисления сульфидов с тем, чтобы избежать их перегрева относительно средней температуры процесса.
При определении интенсивности теплообмена в рабочем пространстве печи, соответствующей заданным параметрам технологического процесса, необходимо также учитывать характер протекания реакций окисления сульфидов. В реальных условиях это чрезвычайно сложный многостадийный процесс. Однако, для его энергетической оценки можно воспользоваться упрощенной двухстадийной моделью, которая описывается следующими уравнениями
1 2Cu2 S + ЗО2 - 2Cu2 O + 2SO2 + 2015 кДж
Cu2 S + 2Cu2 O = 6Cu + SO2 — 304 кДж
2 Cu2 S + 2Cu2 O = 6Cu + SO2 — 304 кДж
Cu2 S + О2 = 2Cu + SO2 +1711 кДжна1 кг меди
3 9FeS + 15O2 = 3Fe3 O4 + 9SO2 + 9258 кДж
FeS + 3Fe3 O4 = l0FeO + SO2 — 896 кДж
4 FeS + 3Fe3 O4 = 10FeO + SO2 — 896 кДж
FeS + 1,5O2 = FeO + SO2 + 8389 кДжна 1 кгжелеза
Из анализа уравнений реакций 1—4 следует, что при многостадийном характере процесса величина, характеризующая количество тепла, выделившегося в зоне окисления сульфидов, может существенно отличаться от своего среднего значения, рассчитанного по данным теплового баланса процесса (т. е. по суммарным тепловым эффектам реакций). В рассматриваемом случае для завершения второй стадии химических превращений, предусмотренных принятой технологией, необходимо, чтобы «дополнительное» (по сравнению со средними балансными характеристиками) тепло, полученное на первой стадии окисления сульфидов, в процессе теплообмена поступило в зону протекания эндотермических реакций. Интенсивность теплообмена (тепловой поток кВт), соответствующая двух стадийному характеру протекания процесса окисления сульфидов, определяется по данным его материального и теплового балансов и может быть рассчитана по формуле