Курсовая работа: Плазменные печи

2) наибольшее отношение Рвд, равное 56%, достигается при наиболее короткой дуге, равной lд =lд max . Однако меньшее напряжение дуги в этом случае является причиной абсолютного снижения мощности Рn ;

3) чрезмерное удлинение дуги (lд >2lд max ) приводит к резкому снижению Pn , несмотря на соответствующее увеличение Uд (при неизменной температуре футеровки), так как мощность, передаваемая через анодное пятно, постепенно уменьшается до нуля, снижая эффективность плазменного нагрева.

Следует особо отметить, что рациональную длину плазменной дуги следует устанавливать, когда металл почти расплавлен. В начале периода расплавления можно работать и на более длинных дугах, чтобы ввести в печь максимально возможную мощность Рд , которую можно получить от источника питания.

Геометрические размеры свободного пространства согласуют с выбранным lд рац. или заданным значением (по электрическим условиям) длины дуги, чтобы высота стены, определяющая расположение пят свода, соответствовала условию: hc т кр <hст <hст равн , где hc т кр - наименьшая допустимая высота расположения свода, при которой происходит равнозначное облучение плазменными дугами футеровки свода и стены в «горячем поясе».

Условие hст равн <hст при данной длине дуги lд связано с увеличением заглубления плазматронов в свободное пространство и возрастанием тепловых потерь с охлаждающей средой, тогда как облучённость поверхности свода практически не изменяется.

Как уже отмечалось, параметры электрического режима ПДП, определяемые вольтамперной характеристикой плазменной дуги, зависят от целого ряда внешних факторов- состава и расхода плазмообразующего газа, температурной ситуации в рабочем пространстве, длины дуги.

В отличии от ДСП в рабочем режиме ПДП не требуется непрерывного передвижения плазматрона, так как существует определённая длина дуги lд рац , зависящая от силы тока, при которой происходит наиболее эффективна передача тепла от плазменной дуги к ванне т.е. Pв максимальна. Передвижение плазматрона необходима для зажигания дуги. Последовательность операций такая: сначала проводят пробой промежутка между катодом и соплом высоковольтным искровым зарядом, возбуждаемым специальным разрядником – высокочастотным осциллятором и зажигают вспомогательную дугу с силой тока до 200 А; затем при помощи, например, гидравлического привода передвигают плазматрон в сторону шихты до тех пор, пока под действием напряжения холста хода источника питания не произойдёт пробой рабочего промежутка, ионизируемого потоком плазмы вспомогательной дуги, и зажигание плазменной дуги между анодом-шихтой. После зажигания основной дуги устанавливают плазматрон в рабочем положении, характеризуемом рациональной для заданной силы тока длиной дуги lд рац .

Электротехническим недостатком ПДП является снижение Uд с увеличением температуры рабочего пространства и соответствующее уменьшение мощности нагрева по ходу плавки (при неизменных значениях силы тока и массового расхода плазмообразующего газа). В ряде случаев удаётся стабилизировать или даже повысить напряжения и мощность плазменной дуги путём введения второго компонента в плазмообразующий газ - водорода или азота, поскольку в этих газах дуговой разряд имеет более высокую вольт - амперную характеристику. Но водород, кроме того, что увеличивает взрывоопасность, оказывает вредное влияние на ход технологического процесса и качество некоторых марок сталей. В таких случаях возможно вдувание в рабочее пространство ПДП дополнительного объёма холодного газа с последующей его откачкой и охлаждением. Потери тепла с откачиваемым газом могут быть компенсированы снижением тепловых потерь во всех элементах печи в результате ускорения плавки при более высокой мощности плазменных дуг.

В печах с огнеупорной футеровкой максимальное значение мощности дуг Рд ограничено допустимой температурой Тф из-за особых условий теплопередачи от плазменных дуг. Поэтому эксплуатация ПДП возможна только с системой автоматического регулирования величины Рд по непрерывно измеряемой температуре футеровки Тф .

Технико-экономические показатели.

ПДП с огнеупорной футеровкой имеют худшие энергетические показатели по сравнению с ДСП из-за дополнительных тепловых потерь в плазматронах и подовом электроде. Общие потери энергии в водоохлаждаемых элементах достигают 35-40%, из которых 15-20%-в уплотнителе плазматрона; 8-10%- в самом плазматроне (корпус, сопло, катод); 1-2% в подовом электроде. Для малых печей (вместимостью до 5 тонн) тепловой КПД составляет по данным ВНИИЭТО 0,3-0,35.

Электрический КПД h0 учитывает электрические потери при формировании плазменной печи (h0 ) в токоведущих элементах плазматрона (hпл ) во втором токоподводе (hк.в. ) и в источнике питания (hи.п. ), т.е. h0 =hк.в hпл hи.п

Обычно КПД дуговых плазматронов прямого действия h0 »1, для плазматронов косвенного действия не превышает 0,7-0,8 (в зависимости от состава и расхода плазмообразующего газа).

По данным ВНИИЭТО, удельный расход электроэнергии в плазменно-дуговых печах различной вместимости m0 и разной мощности Р составляет:

m0 , т ………………………5 10 30

Р, МВт………………….. 3,5 7-8,5 12-15

W2 y , МВт*ч/т……………0,7 0,65 0,625

Wy , МВт*ч/т………… 0,9-1,1 Нет св. Нет св.

В ПДП с кристаллизатором диаметром Dкр величина Wу составляет:

Dкр , мм 150 250 320

Wy , МВт*ч/т 2,4 1,2 0,96

По технологическим инструкциям рекомендуемая скорость вытягивания слитка и соответствующая массовая скорость Qm плазменно-дугового переплава зависит от размера (диаметра Dкр ) кристаллизатора, сортамента переплавляемых сталей и сплавов, электрического режима, составляя, например, для печей типа У-400 (мощность 240 кВт) 2,5-9 мм/мин и 50-200 кг/ч. При этом годовая производительность достигает 100-260 тонн «черных» слитков диаметром 150 мм.

Для дуговых плазматронов различной мощности принимают Qv »15÷60 м3 /ч. Поэтому удельный расход плазмообразующих газов при низкой производительности ПДП может быть чрезмерно большим (до 20-30 м3 /т), определяя при высоких ценах на аргон значительные затраты. Эти аппараты снижают за счёт: применения смесей более дешевых плазмообразующих газов (например, аргон с азотом); регенерации отработанных газов; удаления воздуха из рабочего пространства герметичной ПДП путём вакуумирования вместо обычной продувки плазмообразующим газом.

Сравнительный экономический анализ различных методов электроплавки показывает, что:

1) плазменная плавка в печах с футеровкой может быть самой экономичной, поскольку за счет снижения угара (при плавке) и увеличения выхода годного (при дальнейшем переделе) по сравнению с плавкой в ДСП возможно уменьшение сквозного расхода металла, снижение себестоимости (на 10-15%) при меньших удельных капитальных затратах (на 10-12%);

2) плазменный переплав в печах с кристаллизатором занимает промежуточное положение между вакуумно-дуговым переплавом и электронной плавкой. Однако при использовании ПДП с расходуемым плазматроном экономичность процесса возрастает.

К-во Просмотров: 307
Бесплатно скачать Курсовая работа: Плазменные печи