Курсовая работа: Подбор гидродвигателя к станку модели ЗУ131М
, (8.1)
где Nпол - полезная мощность гидродвигателя;
Nн - мощность привода насоса.
Nпол =Fш ·Vш , (8.2)
ТогдаNпол =2.5·103 ·1.5/60=0,31кВт.
9. Приближенный расчет теплового режима гидропривода .
Нагрев рабочей жидкости происходит за счет гидравлического трения в гидролиниях, а также механического и вязкостного трения в насосе и гидродвигателях. При нагревании рабочей жидкости свыше 800 С ее вязкость и смазочные свойства снижаются. Температуру жидкости можно снизить при помощи охлаждения. При расчете количества отводимой в окружающую среду теплоты площадь наружной поверхности элементов гидропривода оценивают исходя из объема циркулирующей в них жидкости. Это, в первую очередь, поверхности гидробака, насоса и гидродвигателей. При непрерывной работе гидропривода в течение времени t (ч) температура рабочей жидкости в гидробаке определяется по формуле:
, (9.1)
где То- температура окружающего воздуха;
∆N- потери мощности в гидроприводе;
S- расчетная площадь поверхности гидробака;
К- коэффициент теплоотдачи от гидробака к воздуху:
, (9.2)
где α1- коэф-т теплообмена между рабочей жидкостью и стенкой гидробака
δ- толщина стенки гидробака (м); λ- коэффициент теплопроводности стенки гидробака (для стали λ=4,4…5,5Вт/м*0 С );
α2- коэф-т теплообмена между стенкой гидробака и окружающей средой.
Значения коэффициентов α1 и α2 принимаем α1=50, α2=35.
Тогда, Вт/м2 *0 С
Потери мощности в гидроприводе определяются как разность между мощностью насоса и полезной мощностью гидродвигателей:
∆Nпот=Nнас·(1-η), (9.3)
Тогда, ∆Nпот=0,12·(1-0,14)=0,1032 кВт.
Тогда температура рабочей жидкости в гидробаке:
Максимальная температура рабочей жидкости в гидрробаке должна быть не более 850 С, в нашем случае получилось 200 С- условие выполняеться.
Тогда требуемый объем рабочей жидкости в гидробаке можно определить по формуле:
(9.4)
Список литературы
1.Башта Т.М. и др. Гидравлика, гидромашины и гидроприводы. М.:Машиностроение,1982.423 с.