Курсовая работа: Подбор теплообменника для проведения процесса охлаждения и конденсации пара толуола

Тепловую нагрузку Q в соответствии с заданными технологическими условиями находят из уравнения теплового баланса для одного из теплоносителей:

— если агрегатное состояние теплоносителя не меняется — из уравнения

Q = Gi ·ci ·[ti н - ti k ], i =1,2, (7)

— при конденсации насыщенных паров без охлаждения конденсата или при кипении — из уравнения

Q = Gi ·ri , i = 1,2, (8)

— при конденсации перегретых паров с охлаждением конденсата

Q = G1 ·(I – c1 ·t1 k ), (9)

где I — энтальпия перегретого пара Дж/кг.

Если агрегатное состояние теплоносителя не меняется, его среднюю температуру можно определить как среднеарифметическую между начальной и конечной температурами:

ti = (t + tik )/2, i = 1,2, (10)

Более точное значение средней температуры одного из теплоносителей

можно получить, используя среднюю разность температур:

ti = tj ± ∆tc p, (11)


где tj — среднеарифметическая температура теплоносителя с меньшим перепадом температуры вдоль поверхности теплообмена, °С.

При изменении агрегатного состояния теплоносителя его температура постоянна вдоль всей поверхности теплопередачи и равна температуре кипения (или конденсации) зависящей от давления и состава теплоносителя.

Для протекания процесса передачи тепла необходимо наличие некоторой разности температур между горячим и холодным теплоносителями. Эта разность температур является движущей силой процесса теплопередачи и называется температурным напором. Если Т — температура горячего теплоносителя, а t — температура холодного теплоносителя в °С, то температурный напор:

q = T – t, (12)

Чем больше температурный напор, тем выше скорость передачи тепла, причём количество тепла, передаваемого от горячего теплоносителя к холодному, пропорционально поверхности теплообмена F (м2 ), температурному напору q и времени τ, с :

Q = K·F·q·τ, (13)

где K — коэффициент теплопередачи, Вт/м2 ∙К.

Если тепло переносится путём теплопроводности через стенку, то, согласно закону Фурье, количество передаваемого тепла пропорционально поверхности F, разности температур между обеими поверхностями стенки (qст . = tст .1 -tст .2 ),времени τ и обратно пропорционально толщине стенки δ:

Q = [λ·F(tст1 – tст2 )·τ]/δ = (λ·F·qст .·τ)/δ, (14)


где tст1 и tст2 — температура поверхностей стенки; λ – коэффициент теплопроводности, Вт/(м∙К).

1.2 Основные типы теплообменников

1.2.1 Назначение и классификация теплообменных аппаратов

Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). В химической технологии теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твердых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т. д.

Соответственно своему назначению теплообменные аппараты называют подогревателями, холодильниками, испарителями, конденсаторами, дистилляторами, сублиматорами, плавителями и т.п.

По способу передачи тепла различают теплообменные аппараты поверхностные и смесительные. В первом случае передача тепла происходит через разделяющие твердые стенки, во втором — непосредственным контактом (смешением) нагретых и холодных сред (жидкостей, газов, твердых веществ). Поверхностные аппараты подразделяются на рекуперативные и регенеративные. В рекуперативных аппаратах тепло от горячих теплоносителей к холодным передается через разделяющую их стенку, поверхность которой называется теплообменной поверхностью, или поверхностью нагрева. В регенеративных аппаратах оба теплоносителя попеременно соприкасаются с одной и той же стенкой, нагревающейся (аккумулируя тепло) при прохождении горячего потока и охлаждающейся (отдавая аккумулированное тепло) при последующем прохождении холодного потока. Регенераторы являются аппаратами периодического действия, рекуператоры могут работать как в периодическом, так и в непрерывном режимах.

1.2.2 Обзор типовых теплообменных аппаратов

К-во Просмотров: 247
Бесплатно скачать Курсовая работа: Подбор теплообменника для проведения процесса охлаждения и конденсации пара толуола