Курсовая работа: Получение сорбционных материалов с биогенными элементами

В некоторых работах иммобилизацию молекул белка осуществляли на производных целлюлозы (сульфанилэтилового эфира целлюлозы, аминоэтилцеллюлозы, диальдегидцеллюлозы), поверхность которых была модифицирована глутаровым альдегидом. В качестве белка использовали инсулин, рибозофосфатизомеразу, желатину, фермент протеазу Bacillussubtilis. Полученные иммобилизованные препараты отличались стабильностью и достаточно высоким процентом сохранения активности.

Способ получения иммобилизованного осахаривающего ферментного препарата включает в себя связывание осахаривающего фермента с нерастворимым носителем с помощью глутарового альдегида.

В качестве носителя используются гранулированный казеин, а связывание осуществляли в водной среде в присутствии яичного альбумина при соотношении компонентов : носитель (0,02-0,2):1; фермент: альбумин (0,2-1,5):1; глутаровый альдегид: фермент с альбумином (0,2-0,4):1. Для иммобилизации используют аминоглюкозидазу или – амилазу. Глутаровый альдегид используют в виде 50% водного раствора. Предпочтительный размер частиц казеина составил 100-500 мкм.

Таблица 2

Содержание аминокислотных остатков

в отдельных фракциях казеина

Аминокислота aS 1 b g c
Аспарагиновая кислота 14-16 9-10 9 11-12
Глутаминовая кислота 38-41 37-39 39 27
Гистидин 5 5-6 6-7 3
Аргинин 5-6 4-5 3-4 5
Лизин 14-15 11-12 12 9
Глицин 9-10 5 5 3
Серин 13-14 13-15 12-13 12-13
Треонин 5 9 10 13-14
Аланин 8-9 5-6 6 13-14
Цистин 0 0 0 2
Метионин 5 6 7 2
Валин 10-11 18-19 20 11
Лейцин 14-17 21 23 8
Изолейцин 11 10 8 11-12
Пролин 17-18 33-35 40-41 19
Фенилаланин 6-8 9 11 4
Тирозин 10 3-4 5 8
Триптофан 2 1 1 1

Полученный ферментный препарат представляет собой гранулированный казеин, покрытый белковым слоем альбумина, проницаемым для жидкости, и в этом же слое осахаривающий фермент поперечно сшит с альбумином яйца с помощью глутарового альдегида и сохранял ферментативную активность в переделах 53-67,8%

1.3. Использование сорбционных материалов в медицине и медицинской промышленности

Одно из основных направлений биотехнологии предусматривает разработку сорбционных материалов и дальнейшее их применение в медицине и медицинской промышленности в качестве незаменимых материалов для гемо - и энтеросорбции.

В зависимости от того, каким комплексом характеристик обладает тот или иной сорбент проявляются его терапевтические свойства как энтеросорбента. Анализируя предъявляемые нормативными документами и клинической практикой требования к энтеросорбентам, можно выделить комплекс свойств, присущих как бы “идеальному” энтеросорбенту:

- полная безвредность и нетоксичность;

- высокая биосовместимость с тканями, кровью и другими биосубстратами организма;

- неповреждающее действие на слизистые оболочки ротовой полости, пищевода, желудочно-кишечного тракта;

- избирательная сорбция среднемолекулярных токсичных метаболитов;

- высокая адсорбционная емкость;

Проблему создания эффективного и безопасного энтеросорбента, предназначенного для очищения организма от токсических веществ (шлаков), которые продуцируются при различных заболеваниях, уже в течение многих лет решают ученые разных стран.

Энтеросорбенты — продукты, используемые для связывания метаболитов, токсинов и других веществ в пищеварительном тракте. Они перспективны при решении проблем регулирования питания человека, для снижения поступления в организм экологически вредных веществ (в том числе радионуклидов, пестицидов, тяжелых металлов), профилактики и лечения ряда заболеваний.

Разработан способ энтеросорбции из водных растворов таких вредных веществ и соединений, как формальдегид, фенол, нитраты, нитриты, ионы свинца и др., в котором в качестве энтеросорбентов использованы пищевые волокна из различного растительного сырья. Было установлено, что за процесс связывания указанных веществ ответственны положительно и отрицательно заряженные группировки лигнина, гемицеллюлоз, пектиновых и белковых веществ, входящих в состав пищевых волокон (ПВ).

Пищевые волокна представляют собой сложный комплекс биополимеров линейной и разветвленной структуры с большой молекулярной массой. Присутствие первичных и вторичных гидроксильных (целлюлоза, гемицеллюлозы), фенольных (лигнин), карбоксильных групп (гемицеллюлозы, пектиновые вещества) обусловливает межмолекулярное взаимодействие (водородные связи) различной плотности упаковки, способность сорбировать воду и другие полярные молекулы и ионы. Поэтому для ПВ характерны водоудерживающая способность, ионообменные и другие особенности. ПВ способны взаимодействуют с белками, ферментами, гормонами, продуктами распада углеводов, пептидами и аминокислотами, жирными и другими кислотами в процессе пищеварения в желудочно-кишечном тракте человека. Характер этих превращений зависит от состава ПВ, содержания в них полимеров, их строения, взаимосвязи и плотности межмолекулярной упаковки, соотношения аморфных и кристаллических участков волокон [6].

Результаты оценки сорбционной способности ПВ, выделенных из различных видов растительного сырья, показывают, что найдена новая группа энтеросорбентов, обладающих как ионитной, так и молекулярной сорбцией. Они способны связывать ионы свинца, кадмия и других тяжелых металлов, нитраты, нитриты, аммиак, радионуклиды (стронций, цезий) и целый ряд органических веществ, в том числе фенолы, формальдегид, карбамид и другие.

Если препараты полифепан, билигнин, активированный уголь рекомендуется использовать только периодически, то ПВ возможно добавлять в пищу систематически. Помимо сорбции экологически вредных веществ (ЭВВ), пищевые волокна оказывают и общее положительное действие на работу желудочно-кишечного тракта, снижают поступление в организм холестерина, используются при [6]. Концентраты ПВ, выделенные из различных видов растительного сырья, обладают разной способностью связывать ЭВВ. Очевидно, ПВ оболочек гороха, жома сахарной свеклы, жмыха семян винограда и люцерны значительно превосходят по сорбции свинца такие известные энтеросорбенты, как билигнин, полифепан, карболен. В меньшей мере они связывают нитраты, нитриты и в значительной — формальдегид, карбамид и другие вещества.

Основным сорбирующим началом в ПВ является лигнин. Эффективен комплекс целлюлозы с гемицеллюлозами. Целлюлоза обладает хорошей сорбционной способностью по отношению к нитратам, карбамиду, меньшей — к другим ЭВВ [6].

В настоящее время в биологии и медицине активно развивается учение о микроэлементозах. Медики уже давно обратили внимание на то, что многие болезни связаны с недостаточностью поступления и содержания в организме определенных макро- и микроэлементов. Микроэлементы - это группа химических элементов, которые содержатся в организме человека в очень малых количествах.

Микроэлементы являются важнейшими катализаторами различных биохимических процессов, обмена веществ, играют значительную роль в адаптации организма. Из 92 встречающихся в природе элементов 81 обнаружен в организме человека.

Одним из жизненно необходимых элементов является кобальт. Кобальт относится к числу биологически активных элементов и всегда содержится в организме человека и животных. Он оказывает существенное влияние на процессы кроветворения. Входя в состав водорастворимого витамина В12 (цианкобаламин), кобальт весьма активно влияет на поступление азотистых веществ, увеличения содержания хлорофилла и аскорбиновый кислоты. Кобальт активирует ряд ферментов, усиливает биосинтез белков и нуклеиновых кислот. Кобальт влияет на синтез мышечных белков, на миелинизацию нервных волокон. Недостаточное поступление солей кобальта в организм приводит к неполному усвоению кальция и фосфора. Он способствует включению иона железа в молекулу гемоглобина.

В отличие от некоторых других микроэлементов кобальт не может накапливаться в организме, и поэтому он постоянно должен поступать с пищей. Компенсировать недостаток кобальта можно с помощью некоторых пищевых продуктов, например винограда. Содержание кобальта в различных пищевых продуктах незначительно. Однако обычно смешанные пищевые рационы вполне удовлетворяют организм в кобальте. Кобальт содержится в незначительных количествах в мясе, рыбе, яйцах, молочных продуктах, картофеле, воде. Более богаты кобальтом печень, почки, а также свекла, горох, земляника, клубника. Суточная потребность организма человека 0,1 – 0,2 мг.

Медики убедительно показывают, что макро- и микроэлементы, поступающие с пищей, не компенсируют их дефицит в организме, и для обеспечения восполнения требуются специальные препараты - биологически активные добавки.

Методическая часть

2.1.Характеристика реагентов используемых для получения

сорбентов

Казеин - белок молока, фосфопротеин. В чистом виде представляет собой белый аморфный гигроскопичный порошок без запаха и вкуса, нерастворимый в воде, спирте и эфире, но растворимый в некоторых органических солях.

Из материалов органической природы нами использовался неионогенный гидрофильный полисахарид - микрокристаллическая целлюлоза производства Lachema (Chemapol, Praha-Сechoslovakia), (C6 H10 O5 )n , с молекулярным весом (162,14)n .

Выбор микрокристаллической целлюлозы (МКЦ) в качестве носителя обусловлен, прежде всего, ее доступностью и наличием реакционно-способных групп, легко вступающих в химические реакции. МКЦ - продукт модификации природной целлюлозы, получаемый путем гидролитической деструкции.

МКЦ нерастворима в воде, но растворима в аммиачных растворах солей меди, отличается высокой гидрофильностью и хорошими сорбционными свойствами. МКЦ - легкосыпучий порошок белого цвета, по своим свойствам близка к природной целлюлозе, абсолютно безвредна и нетоксична.

2.2. Получение казеина.

50 г сухого молока растирают в 450 мл воды, где уже растворено 3 г лимонной кислоты. Раствор взбивают, затем центрифугируют. Так повторяют несколько раз (отмывка). Полученный осадок высушивают в сушильном шкафу.

2.3. Метод определения удельной адсорбции энтеросорбента по иону кобальта ( II ).

К-во Просмотров: 206
Бесплатно скачать Курсовая работа: Получение сорбционных материалов с биогенными элементами