Курсовая работа: Портфельная теория Марковица
Согласно уравнению (1) доходность ценной бумаги за один период может быть вычислена по формуле:
(1)
где "благосостоянием в начале периода" называется цена покупки одной ценном бумаги данного вида в момент t = 0 (например, одной обыкновенной акции фирмы), а "благосостоянием в конце периода" называется рыночная стоимость данной ценной бумаги в момент t = 1 в сумме со всеми выплатами держателю данной бумаги наличными (или в денежном эквиваленте) в период с момента t = 0 до момента t = 1. Поскольку портфель представляет собой совокупность различных ценных бумаг, его доходность может быть вычислена аналогичным образом:
(2)
Здесь W0 обозначает совокупную цену покупки всех ценных бумаг, входящих в портфель в момент t = 0; W1 - совокупную рыночную стоимость этих ценных бумаг в момент t = 1 и, кроме того, совокупный денежный доход от обладания данными ценными бумагами с момента t = 0 до момента t = 1.
Уравнение (2) с помощью алгебраических преобразований может быть приведено к виду:
(3)
Из уравнения (3) можно заметить, что начальное благосостояние, или благосостояние в начале периода (W0), умноженное на сумму единицы и уровня доходности портфеля, равняется благосостоянию в конце периода (W1), или конечному благосостоянию.
Ранее отмечалось, что инвестор должен принять решение относительно того, какой портфель покупать в момент t = 0. Делая это, инвестор не знает, каким будет предположительное значение величины для большинства различных альтернативных портфелей, так как он не знает, каким будет уровень доходности большинства этих портфелей.
Таким образом, по Марковицу, инвестор должен считать уровень доходности, связанный с любым из этих портфелей, случайной переменной. Так переменные имеют свои характеристики, одна из них - ожидаемое (или среднее) значение, а другая - стандартное отклонение.
Марковиц утверждает, что инвестор должен основывать свое решение по выбору портфеля исключительно на ожидаемой доходности и стандартном отклонении. Это означает, что инвестор должен оценить ожидаемую доходность и стандартное отклонение каждого портфеля, а затем выбрать "лучший" из них, основываясь на соотношении этих двух параметров. Интуиция при этом играет определяющую роль. Ожидаемая доходность может быть представлена как мера потенциального вознаграждения, связанная с конкретным портфелем, а стандартное отклонение - как мера риска, связанная с данным портфелем. Таким образом, после того, как каждый портфель был исследован в смысле потенциального вознаграждения и риска, инвестор должен выбрать портфель, который является для него наиболее подходящим.
Предположим, что два альтернативных портфеля обозначены А и В. Эти портфели представлены в табл.1. Портфель А имеет ожидаемую годовую доходность 8%, а портфель В - 12%. Предположим, что начальное благосостояние инвестора составляет 100000, а период владения равен одному году; это означает, что ожидаемые уровни конечного благосостояния, связанные с портфелями А и В, составляют 108000 и 112000 соответственно. Исходя из этого можно сделать вывод, что портфель В является более подходящим. Однако портфели А и В имеют годовое стандартное отклонение 10 и 20% соответственно.
Таблица 1 - Сравнение уровней конечного благосостояния двух гипотетических портфелей
Уровень конечного благосостояния (в ден. ед) | Вероятность оказаться ниже данного уровня благосостояния (%) | |
Портфель А[1] | Портфель В[2] | |
70000 | 0 | 2 |
80000 | 0 | 5 |
90000 | 4 | 14 |
100000 | 21 | 27 |
110000 | 57 | 46 |
120000 | 88 | 66 |
130000 | 99 | 82 |
Как показывает табл.1, это означает, что вероятность того, что инвестор будет иметь конечное благосостояние в 70000 или меньше, составляет 2% при условии, что был приобретен портфель В, в то время как фактически вероятность того, что конечное благосостояние инвестора будет меньше 70000 при приобретении портфеля А, равняется нулю. Аналогично конечное благосостояние для портфеля В может с вероятностью 5% оказаться меньше 80000, в то время как для портфеля А эта вероятность опять равна нулю. Если продолжить рассмотрение, то можно обнаружить, что вероятность для портфеля В получить меньше 90000 равна 14%, а для портфеля А - 4%. Далее, с вероятностью 27% конечное благосостояние для портфеля В покажется меньше 100000, в то время как для портфеля А такая вероятность составляет всего лишь 21%.
Так как инвестор обладает начальным благосостоянием в 100000, то это означает, что существует большая вероятность получить отрицательную доходность (27%) при покупке портфеля В, чем при покупке портфеля А (21%). В конечном счете из табл.1 можно увидеть, что портфель А является менее рисковым портфелем, чем В, а это означает, что в этом смысле он более предпочтителен. Конечное решение о покупке портфеля А или В зависит от отношения конкретного инвестора к риску и доходности.
Метод, который будет применен для выбора наиболее желательного портфеля, использует так называемые кривые безразличия. Эти кривые отражают отношение инвестора к риску и доходности и, таким образом, могут быть представлены как двухмерный график, где по горизонтальной оси откладывается риск, мерой которого является стандартное отклонение (обозначенное ), а по вертикальной оси - вознаграждение, мерой которого является ожидаемая доходность (обозначенная ).
На графиках кривых безразличия гипотетического инвестора каждая кривая линия отображает одну кривую безразличия инвестора и представляет все комбинации портфелей, которые обеспечивают заданный уровень желаний инвестора. Отсюда следует первое важное свойство кривых безразличия: все портфели, лежащие на одной заданной кривой безразличия, являются равноценными для инвестора. Следствием этого свойства является тот факт, что кривые безразличия не могут пересекаться. Это приводит ко второму важному свойству кривых безразличия: инвестор будет считать любой портфель, лежащий на кривой безразличия, которая находится выше и левее, более привлекательным, чем любой портфель, лежащий на кривой безразличия, которая находится ниже и правее.
В заключение следует заметить, что инвестор имеет бесконечное число кривых безразличия. Это просто означает, что, как бы не были расположены две кривые безразличия на графике, всегда существует возможность построить третью кривую, лежащую между ними.
Здесь уместно спросить; как инвестор может определить вид его кривых безразличия? В конце концов, каждый инвестор имеет график кривых безразличия, которые, обладая всеми вышеперечисленными свойствами, в то же время являются сугубо индивидуальными для каждого инвестора. Один из методов требует ознакомления инвестора с набором гипотетических портфелей вместе с их ожидаемыми доходностями и стандартными отклонениями. Из них он должен выбрать наиболее привлекательный. Исходя из сделанного выбора, может быть произведена оценка формы и местоположения кривых безразличия инвестора. При этом предполагается, что каждый инвестор будет действовать так, как будто бы он исходит из кривых безразличия при совершении выбора, несмотря на то, что осознанно их не использует.
В заключение можно сказать, что каждый инвестор имеет график кривых безразличия, представляющих его выбор ожидаемых доходностей и стандартных отклонений. Это означает, что инвестор должен определить ожидаемую доходность и стандартное отклонение для каждого потенциального портфеля, нанести их на график и затем выбрать один портфель, который лежит на кривой безразличия, расположенной выше и левее относительно других кривых.
При обсуждении кривых безразличия мы сделали два неявных предположения. Первое: предполагается, что инвестор, делающий выбор между двумя идентичными во всем, кроме ожидаемой доходности, портфелями, выберет портфель с большей ожидаемой доходностью.
Более полно можно сказать, что при использовании подхода Марковица делается предположение о ненасыщаемости, т.е. предполагается, что инвестор предпочитает более высокий уровень конечного благосостояния более низкому его уровню. Это объясняется тем, что более высокий уровень конечного благосостояния позволяет ему потратить больше на потребление в момент t= 1 (или в более далеком будущем).
Таким образом, если заданы два портфеля с одинаковыми стандартными отклонениями, то инвестор выберет портфель с большей ожидаемой доходностью.
Однако все не так просто в случае, когда инвестору нужно выбирать между портфелями, имеющими одинаковый уровень ожидаемой доходности, но разный уровень стандартного отклонения. Это тот случай, когда стоит принять во внимание второе предположение, состоящее в том, что инвестор избегает риска.
В общем случае предполагается, что инвестор избегает риска, т.е. он выбирает портфель с меньшим стандартным отклонением. Что значит, избегает риска? Это означает, что инвестор, имеющий выбор, не захочет выбрать "честную игру", при которой, по определению, ожидаемое вознаграждение равняется нулю. Например, предположим, что мы подкидываем монету, причем если выпадает "орел", то мы получаем $5, а если выпадает "решка", то мы платим $5. Так как существует 50% -ная вероятность выпадения "орла" (или "решки"), то ожидаемое вознаграждение составляет $0 [ (0,5 х $5) + (0,5 х (-$5))].
Соответственно инвестор, избегающий риска, будет инстинктивно избегать эту азартную игру. Это объясняется тем фактом, что "количество разочарования" при потенциальном проигрыше оказывается выше, чем "количество удовольствия" при потенциальном выигрыше.
Эти два предположения о ненасыщаемости и об избегании риска являются причиной выпуклости и положительного наклона кривой безразличия. Несмотря на предположение о том, что все инвесторы избегают риска, нельзя предположить, что степень избегания риска одинакова у всех инвесторов. Некоторые инвесторы могут избегать риска в значительной степени, в то же время другие могут слабо избегать риска. Это означает, что различные инвесторы будут иметь различные графики кривых безразличия.
1.2 Вычисление ожидаемых доходностей и стандартных отклонений портфелей
В предыдущем разделе была рассмотрена проблема выбора портфеля, с которой сталкивается каждый инвестор. Кроме того, был изложен подход к инвестициям Гарри Марковица как метод решения данной проблемы.
При этом подходе инвестор должен оценить все альтернативные портфели с точки зрения их ожидаемых доходностей и стандартных отклонений, используя кривые безразличия.