Курсовая работа: Последовательность решения задач линейного программирования симплекс-методом
…
bm0
b11 … b1s … b1,n-m
……………………………………
bk1 … bks … bk,n-m
……………………………………
bm1 … bms … bm,n-m
Используются и другие формы симплексных таблиц, но принятая нами форма является наиболее компактной и наглядной. В ней содержится вся необходимая информация о ходе решения задачи. Если, как предполагалось выше, все bi 0 >0, то при нулевых значениях верхних (свободных) переменных столбец свободных членов дает значения базисных переменных опорного плана xо = (b10 ;…;bm 0 ;0; ... 0) и соответствующее значение b00 целевой функции: f(х0 ) = b00 .
От табличной записи легко перейти к обычной записи уравнений. Для этого надо умножить элементы bkj k-й строки на соответствующие переменные, стоящие в заглавной строке (-xm + i ), полученные произведения сложить и сумму приравнять xk Тогда
bko *1 + bk1 (—xm+l )+ … +bks {—xm+s )+ ... + bk ,n-m (—xn ) =xk илиxi = bi0 -∑ bij xm+1 .
4. Критерии оптимальности
Рассмотрим последовательность решения задач линейного программирования симплекс-методом и изложим ее применительно к задаче максимизации.
1. По условию задачи составляется ее математическая модель.
2. Составленная модель преобразовывается к канонической форме. При этом может выделиться базис с начальным опорным планом.
3. Каноническая модель задачи записывается в форме симплекс-таблицы так, чтобы все свободные члены были неотрицательными. Если начальный опорный план выделен, то переходят к пункту 5.
4. Находят начальный опорный план, производя симплексные преобразования с положительными разрешающими элементами, отвечающими минимальным симплексным отношениям, и не принимая во внимание знаки элементов f-строки. Если в ходе преобразований встретится 0-строка, все элементы которой, кроме свободного члена, нули, то система ограничительных уравнений задачи несовместна. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то система ограничительных уравнений не имеет неотрицательных решений.
5. Найденный начальный опорный план исследуется на оптимальность:
а) если в f-строке нет отрицательных элементов (не считая свободного члена), то план оптимален. Если при этом нет и нулевых, то оптимальный план единственный; если же есть хотя бы один нулевой, то оптимальных планов бесконечное множество;
б) если в f-строке есть хотя бы один отрицательный элемент, которому соответствует столбец неположительных элементов, то f→ ;
в) если в f-строке есть хотя бы один отрицательный элемент, а в его столбце есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого указанный столбец надо назначить разрешающим, по минимальному симплексному отношению найти разрешающую строку и выполнить симплексное преобразование. Полученный опорный план вновь исследовать на оптимальность. Описанный процесс повторяется до получения оптимального плана либо до установления неразрешимости задачи.
Важно заметить, что поскольку minf= — max( —f), задачу минимизации f можно формально заменить задачей максимизации функции (—f). Но можно этого и не делать. Признаком оптимальности опорного плана задачи минимизации является отсутствие положительных элементов в f-строке симплекс-таблицы, содержащей опорный план. В остальном вычислительная процедура не меняется.
В пункте 3 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование не обязательно, но если оно выполнено, то все последующие симплексные преобразования производятся только с положительными разрешающими элементами, что удобно при расчетах. Если в столбце свободных членов есть отрицательные числа, то разрешающий элемент выбирают следующим образом:
1) просматривают строку, отвечающую какому-либо отрицательному свободному члену, например t-строку, и выбирают в ней какой-либо отрицательный элемент, а соответствующий ему столбец принимают за разрешающий (предполагая, что ограничения задачи совместны);
2) составляют отношения элементов столбца свободных членов к соответствующим элементам разрешающего столбца, имеющим одинаковые знаки (симплексные отношения);
3) из симплексных отношений выбирают наименьшее. Оно и определит разрешающую строку. Пусть ею будет, например, р -строка;
4) на пересечении разрешающих столбца и строки находят разрешающий элемент. Если разрешающим оказался элемент t-строки, то после симплексного преобразования свободный член этой строки станет положительным. В противном случае на следующем шаге вновь обращаются к t-строке. Если задача разрешима, то через некоторое число шагов в столбце свободных членов не останется отрицательных элементов. Если в форму задачи линейного программирования облечена некоторая реальная производственная ситуация, то дополнительные переменные, которые приходится вводить в модель в процессе преобразования ее к канонической форме, всегда имеют определенный экономический смысл.
4.1 Признак оптимальности опорного плана
Если в симплекс-таблице, содержащей некоторый опорный план, все элементы f-строки (не считая свободного члена) неотрицательны, то этот опорный план является оптимальным.. Пусть в f-строке табл. 2.b0 j > (i=1, ..., nm). В опорном плане х0 , содержащемся в этой таблице, значения всех свободных переменных xm + j равны нулю и f(х0 ) =b00 . Если же увеличивать какую-либо из свободных переменных xm + j, то, как видно из равенства (2.5), в силу неотрицательности b0 j значение f(х) начнет уменьшаться. Следовательно, при xо функция f(х) достигает наибольшей величины, а значит, х0 действительно является оптимальным опорным планом.
4.2 Возможность переход от одного опорного плана к другому