Курсовая работа: Построение эконометрической модели и исследование проблемы автокорреляции с помощью тестов Бреуша

Q -статистика принимает нулевой гипотезу об отсутствии автокорреляции и строится по следующему уравнению:

, (4)

где j-номер соответствующего лага, - автокорреляция при соответствующем лаге, T- количество измерений. При отсутствии автокорреляции значения Qмогут асимптотически приближаться к соответствующему значению со степенью свободы равной номеру лага. Q-статистика широко используется для определения того является ли ряд белым шумом.

Как видно из коррелограммы( Q-теста) первые значения функции имеют достаточно большие значения, при том, что заметно их последующее уменьшение при увеличении номера лага. Также на графике же частичной автокорреляции заметен первый «выдающийся» лаг, и увеличение Q на большее значение, чем по таблицам распределения, что чётко указывает на наличие автокорреляции в модели.

При отсутствии автокорреляции Q‑статистика показала бы все значения функции, колеблющиеся около нуля, независимо от номера лага.

Для того чтобы окончательно убедиться в наличии автокорреляции в модели следует проанализировать результаты по тесту Бреуша-Годфри, в котором строится уравнение вида:

(5)


В регрессионной модели, построенной на основании уравнения (5) рассматривается произведение коэффициента детерминации и количества измерений. За нулевую гипотезу принимается то, что все коэффициенты нового уравнения имеют нулевые значения, или статистически незначимы, то есть отсутствие автокорреляции. Альтернативная же гипотеза говорит о наличии в исходной модели проблемы автокорреляции

Таким образом, рассматриваем значение «Obs*R-square» и сравниваем его с соответствующим критически значением из таблиц распределения с количеством степеней свободы равным 1, так как количество степеней свободы равно количеству лагов (в данном случае один).

Наблюдаемое значение оказалось больше критического(7.88 для =0.005), следовательно принимается альтернативная гипотеза, что окончательно убеждает в том, что в модели присутствует положительная (по Дарбину-Уотсону) автокорреляция первого порядка.

- была построена регрессионная модель, с хорошими показаниями t-статистик и высоким коэффициентом детерминации;

- в модели отсутствует гетероскедастичность;

- тесты Бреуша-Годфри и Q-тест выявили в модели наличие автокорреляции;

- для улучшения качества модели, а так же её прогнозных свойств автокорреляцию следует устранить.


Глава 3. Устранение автокорреляции

Как известно широко используемыми методами усовершенствования модели с целью устранения автокорреляции являются:

- уточнение состава переменных, то есть устранение одной либо нескольких переменных или добавление переменных;

- изменение формы зависимости.

Если после ряда этих действий автокорреляция по-прежнему имеет место, то возможны некоторые преобразования, её устраняющие.

Для усовершенствования модели было решено добавь ещё одну переменную в анализ. Эта экзогенная переменная определяется как разность экспорта и импорта страны, и в экономической среде получила название чистого экспорта (EX-IM=NX).

Таким образом, в модели появляется третяя объясняющая переменная и зависимость принимает следующий вид:

(6)

Данное уравнение является основным макроэкономическим тождеством для стран с открытой экономикой, какими и являются большинство стран мира.

При построении регрессионной модели были получены следующие данные:

Dependent Variable: GDP
Method: Least Squares
Date: 12/11/08 Time: 19:23
Sample: 1999:1 2008:2
Included observations: 38
GDP=C(1)+C(2)*IG+C(3)*CONS+C(4)*NX
Coefficient Std. Error t-Statistic Prob.
C(1) 9.983102 15.40599 0.648001 0.5213
C(2) 1.041238 0.031994 32.54493 0.0000
C(3) 1.004281 0.017836 36.30674 0.0000
C(4) 0.890623 0.063486 14.02859 0.0000
R-squared 0.999753 Mean dependent var 4283.858
Adjusted R-squared 0.999731 S.D. dependent var 2609.517
S.E. of regression 42.77300 Akaike info criterion 10.44899
Sum squared resid 62204.00 Schwarz criterion 10.62137
Log likelihood -194.5308 Durbin-Watson stat 2.338553

Уравнение регрессии после округления принимает следующий вид:

(7)

Как видно из таблицы, все объясняющие переменные статистически значимы, а коэффициент детерминации очень высок. Все коэффициенты имеют верный знак и значение, которое очень приближено к значениям коэффициентов в основном макроэкономическом тождестве. С(1) статистически незначим, что можно проинтерпретировать таким образом, что новая модель наиболее приближена к исходному теоретическому уравнению (6). В качестве предварительного анализа на проблему автокорреляции легко заметить, что значение статистики Дарбина-Уотсона находится в области отсутствия автокорреляции (d1=1,318, du=1,656).

Из всего вышесказанного можно сделать следующие выводы:

- модель не имеет проблем спецификации, она качественна и адекватна по первоначальному анализу;

- предварительный анализ по статистике Дарбина-Уотсона указал на отсутствие автокорреляции.


К-во Просмотров: 196
Бесплатно скачать Курсовая работа: Построение эконометрической модели и исследование проблемы автокорреляции с помощью тестов Бреуша