Курсовая работа: Построение траектории Броуновского движения
Снежинка Коха представляет собой линию бесконечной длины, ограничивающую конечную площадь, которая в 1.6 раза больше площади образующего ее треугольника.
Пример построения этого фрактала изображен ниже на рис.1.
Рис.1.Снежинка Коха
1.2 Салфетка Серпинского
Три первых шага в построении этого фрактала изображены на рис.2, а сам фрактал — на рис.3.
Число треугольных пар все меньшего и меньшего масштаба в нем бесконечно. Число черных треугольников в этом построении растет как 3n, где n — номер шага, а длина их стороны уменьшается как 2–n. Легко показать, что площадь белых пятен равна площади исходного треугольника.
Рис.2 Построение салфетки Серпинского
Рис.3. Салфетка Серпинского
1.3 Броуновское движение
Рассмотренные выше примеры фракталов относятся к так называемым точным фракталам или детерминистическим. Они все построены по вполне определенному геометрическому правилу. Помимо точных фракталов, существуют еще так называемые случайные фракталы. В расположении их элементов есть некоторая доля случайности. Простейшим случайным фракталом является траектория частицы, совершающей броуновское движение — рис.4. И хотя сама траектория имеет очень сложный извилистый характер, определить ее фрактальную размерность очень просто. Для этого заметим, что если частица продиффундировала на расстояние R, то среднее число "шагов", которое она сделала, где l — характерная длина одного шага.
Поэтому:
Рис. 4. Траектория движения броуновской частицы.
Это значит, что характерный размер диффузионной траектории на заданной площади пропорционален величине этой площади. То есть траектория на плоскости является достаточно густой. Это, впрочем, не означает конечности площади, заметаемой самой диффузионной кривой, из-за множества самопересечений. Можно показать, что для двумерного броуновского движения вероятность возвращения в любую, сколь угодно малую окрестность произвольно выбранной точки, равна 1. В случае же диффузии в трехмерном пространстве траектория броуновской частицы является, напротив, очень рыхлой (ее фрактальная размерность по-прежнему равна 2) и не заполняет всего предоставленного ей объема. В этом случае вероятность возврата оказывается меньше единицы.
2. СУТЬ БРОУНОВСКОГО ДВИЖЕНИ Я
Начало исследования броуновского движения датируется 1827 годом, когда шотландский ботаник Роберт Броун обнаружил, что мелкие частицы, взвешенные в жидкости, совершают беспорядочное непрерывное движение, которое было названо в честь своего открывателя. В 1905 году Альберт Эйнштейн объяснил это движение хаотическими столкновениями с молекулами окружающей среды.
Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».
Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».
Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.
Норберт Винер в 1923 году построил первую удовлетворительную с математической точки зрения модель выборочных реализаций и доказал их «почти наверное» (на языке теории вероятностей) непрерывность.
Простейшей дискретной аппроксимацией броуновского движения служит случайное одномерное блуждание. В этом случае частица первоначально располагается в точке х0 = 0 на прямой. Частица совершает единичный шаг вправо или влево в зависимости от случайного выбора, например, бросания монеты. Случайное блуждание происходит итеративно. Для каждого п = 1,2,3,….положим, что
хn = хn-1 ± 1.
Более точным приближением к реальному броуновскому движению является замена шагов ±1 случайными величинами gп, имеющими гауссовское, или нормальное распределение. После первого шага частица находится в положении 1= 0 + g1, а после n шагов в положении
.
На рис.5. изображена типичная реализация гауссовского случайного блуждания.