Курсовая работа: Познавательная сфера младших школьников

Примером может служить обобщенный прием получения графических изображений. Анализ частных видов проекционных изображений, изучаемых в школьных курсах геометрии, черчения, географии, рисования и соответствующих им частных видов деятельности, позволил выделить следующее инвариантное содержание умения по получению проекционных изображений:

а) установление способа проецирования;

б) определение способа изображения базисной конфигурации по условию задачи;

в) выбор базисной конфигурации;

г) анализ формы оригинала;

д) изображение элементов, выделенных в результате анализа формы оригинала и принадлежащих одной плоскости, с опорой на свойства проекций;

е) сравнение оригинала с его изображением.

Каждый конкретный способ изображения проекций в указанных предметах представляет собой лишь вариант данного. В силу этого формирование приведенного вида деятельности на материале геометрии обеспечивает учащимся самостоятельное решение задач на получение проекционных изображений в черчении, географии, рисовании. Это означает, что межпредметные связи должны реализовываться по линии не только общих, но и специфических видов деятельности. Что касается планирования работы по каждому отдельному предмету, то учителю необходимо заранее определить последовательность введения в учебный процесс не только знаний, но и специфических приемов познавательной деятельности.

В школе открываются большие возможности для формирования различных приемов мышления. Уже в начальных классах надо заботиться не только о математических и языковых приемах мышления, но и таких, как биологические, исторические. В самом, деле, ведь учащиеся сталкиваются в начальных классах и с природоведческим и обществоведческим материалом. И вот при анализе его очень важно научить учащихся методам анализа, характерным для данных областей знаний. Если ученик просто запоминает несколько десятков природоведческих названий и фактов, то это мало дает ему для понимания законов природы. Если же его научат приемам наблюдения за объектами природы, помогут овладеть методами их анализа, установления причинно-следственных связей между ними, это будет началом формирования собственно биологического склада ума. Совершенно аналогично положение и с обществоведческими знаниями: надо учить не пересказывать их, а использовать для анализа различных социальных явлений.

Таким образом, каждый раз, когда учитель знакомит детей с новой предметной областью, он должен задуматься над теми специфическими приемами мышления, которые характерны для данной области, и постараться сформировать их у обучаемых.

Учитывая, что наибольшие затруднения вызывает математика, более подробно остановимся на приемах математического мышления. Дело в том, что если эти приемы не формируются у учащихся, то они, изучив весь курс математики, так и не научаются думать математически. А это означает, что математика изучена формально, что учащиеся не поняли ее специфических особенностей.

Так, учащиеся III класса уверенно и быстро складывают многозначные числа столбиком, уверенно указывая, что писать под чертой, что «замечать» наверху. Но задайте вопрос: «А почему надо так делать? Может быть, лучше наоборот: замеченное записать под чертой, а записанное заметить?» Многие ученики теряются, не знают, что ответить. Это означает, что такие ученики выполняют арифметические действия успешно, но их математического смысла не понимают. Правильно производя сложение и вычитание, они не понимают принципов, лежащих в основе системы счисления и в основе выполняемых ими действий. Для того чтобы производить арифметические действия, надо прежде всего понять принципы построения системы счисления, в частности зависимость величины числа от его места в разрядной сетке.

Не менее важно научить учеников понимать, что число – это отношение, что числовая характеристика – результат сравнения интересующей величины с каким-то эталоном. Это означает, что одна и та же величина будет получать разную числовую характеристику при сравнении ее с разными эталонами: чем больше эталон, которым мы будем измерять, тем меньше будет число, и наоборот. Значит, не всегда 3 меньше 5. Это верно лишь в том случае, когда величины измерены одним и тем же эталоном (мерой). Для понимания этого необходимо научить школьников прежде всего выделять те стороны в объекте, которые в данном случае подлежат количественной оценке. Если на это не обратить внимания, то у детей сформируется неправильное представление о числе. Так, если показать учащимся I

К-во Просмотров: 240
Бесплатно скачать Курсовая работа: Познавательная сфера младших школьников