Курсовая работа: Прямой метод вращения векового определителя
А это и означает, что -собственный вектор матрицы А , отвечающий собственному значению
Описание входных и выходных данных
Входные параметры:
Квадратная матрица порядка n*n. Рекомендуется, чтобы она была хорошо обусловлена.
Выходные параметры:
Получаем коэффициенты при степенях характеристического полинома. Решая данное уравнение получаем собственные значения исходной матрицы. Следующим шагом является определение собственных векторов.
.
Заключение
Обозначим некоторые выводы по проделанной работе:
Во время освоения данного метода мы не могли пропустить некоторые минусы метода Данилевского:
- Погрешность накапливается со скоростью геометрической прогрессии.
- Приходится решать достаточно сложное уравнение порядка n (если решать с помощью приближенных метод, снова получаем некоторую погрешность)
- В программном варианте используются достаточно большие объемы оперативной памяти, к примеру, приходится хранить до 4 матриц порядка n*n.
Но так же нельзя не остановиться на очевидных плюсах метода:
- Метод удобен для нахождения собственных векторов практически любой матрицы. Рекомендуется рассматривать матрицы меньше порядка нескольких десятков.
- Данный метод очень удобен в программировании (на этапе разработки ПО проблем практически не возникало).
В целом метод все-таки не рекомендуется для решения задач, требующих высоких точностей. Но из-за своей простоты, и высокой скорости, подходит для больших массивов, не требующих отсутствие погрешности.
Список литературы
1. Основы численных методов: Учебник для вузов/ В.М. Вержбицкий. – М.: Высш. Шк., 2002. – 840 с.: ил.
2. Высшая математика для экономистов: Учебник для вузов/ Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; Под ред. проф. Н.Ш. Кремера. – 2-е изд., перераб. и доп. – М.: ЮНИТИ, 2004. – 471 с.
3. Интернет.
4. Библия Delphi/ М.Е. Фленов – СПб.: БХВ-Петербург, 2005. – 880 с.: ил.
Приложение А
unit MainUnit;
interface
uses
Windows, …, Buttons;
type
Matrix = array of array of real;
TForm1 = class(TForm)
…
private
{ Private declarations }