Курсовая работа: Прикладна теорія цифрових автоматів 3
Y10=a15+a17
2. 1 .3. Переведеня у базис:
D1=a1+Ж+К+Ы+Х+Ц+Ч+Ш+Э+Ю+Я+Щ+a21+Б+Ь=
=Na1∙NЖ∙NК∙NЫ∙NХ∙NЦ∙NЧ∙NШ+NЭ∙NЮ∙NЯ∙NЩ∙Na21∙NБ∙NЬ
D2=К+a6+a7+a15+a8+П+Р+a10+Т+Х+Ц+а12+a19+В+Ы=
=NК∙Na6∙Na7∙Na15∙Na8∙NП∙NР∙Na10+NТ∙NХ∙NЦ∙Nа12∙Na19∙NВ∙NЫ
D3= a2+Е+Ж+a4+И+a7+a15+Р+У+a12+Ч+Ш+Г+Д+Ь=
=Na2∙NЕ∙NЖ∙Na4∙NИ∙Na7∙Na15∙NР+NУ∙Na12∙NЧ∙NШ∙NГ∙NД∙NЬ
D4= a13+a17+a1+a2+Е+a6+a8+П+У+a12+Э+Ю+Ь+a25+З+Ы
=Na13∙Na17∙Na1∙Na2∙NЕ∙Na6∙Na8∙NП+NУ∙Na12∙NЭ∙NЮ∙NЬ∙Na25∙NЗ∙NЫ
D5= a13+a17+a1+Ж+a4+И+К+a6+Р+a10+Т+У+Я+Щ+a23+Л=
=Na13∙Na17∙Na1∙NЖ∙Na4∙NИ∙NК∙Na6+NР∙Na10∙NТ∙NУ∙NЯ∙NЩ∙Na23∙NЛ
Y1=a4+a5+a10+a11=Na4∙Na5∙Na10∙Na11
Y2=a2+a8= Na2∙Na8
Y3=a15+a17+a18+a19+a22+a23= Na15∙Na17∙Na18∙Na19∙Na22∙Na23
Y4=a2+a6+a7+a8+a12+a13= Na2∙Na6∙Na7∙Na8∙Na12∙Na13
Y5=a7+a13+a20+a24= Na7∙Na13∙Na20∙Na24
Y6=a18+a21+a22+a25= Na18∙Na21∙Na22∙Na25
Y7=a3+a9= Na3∙Na9
Y8=a5+a11+a14+a16= Na5∙Na11∙Na14∙Na16
Y9=a4+a10+a20+a24= Na4∙Na10∙Na20∙Na24
Y10=a15+a17= Na15∙Na17
Ми отримали усі необхідні вирази для принципової схеми. Будуємо її, користуючись формулами для тригерів та вихідними станами.
2.2. Структурний синтез автомата Мілі
2. 2. 1. Кодування станів
Аналіз канонічного методу структурного синтезу автомата показує, що різні варіанти кодування станів автомата приводять до різних виражень функцій збудження пам'яті і функцій виходів, у результаті чого складність комбінаційної схеми істотно залежить від обраного кодування.
Мы повинні кодувати стани автомату з допомогою евристичного алгоритму кодування, тому що у мене Т-тригер.
Даний алгоритм мінімізує сумарне число переключень елементів пам'яті на всіх переходах автомата і використовується для кодування станів автомата при синтезі на базі T, RS, JK-тригерів. Для даних типів тригерів (на відміну від D-тригерів) на кожнім переході, де тригер змінює своє значення на протилежне, одна з функцій збудження обов'язково дорівнює 1. Зменшення числа переключень тригерів приводить до зменшення кількості одиниць відповідних функцій збудження, що при відсутності мінімізації однозначно приводить до спрощення комбінаційної схеми автомата.
Будую матрицю |T|, яка складається із всіх пар номерів (i, j), для яких P(i, j) 0, ij. Для кожної пари вказуємо її вагу.
║T║ =
i │ j │ P(i,j)
1 │ 2 │ 1