Курсовая работа: Применение датчиков случайных чисел для имитации реальных условий

Для этого формируются следующие статистики:

Kn + =n max (Fn (x)- F(x));

Kn - =n max (F(x)- Fn (x)), при -∞<x<+∞.

Здесь Kn + показывает, каково максимальное отклонение для случая Fn >F, а Kn - - каково максимальное отклонение для случая Fn <F.

Замечание. Наличие множителя n в формуле может показаться странным. Эти формулы не годятся для машинных расчетов, так как требуется отыскать максимальное среди бесконечного множества чисел. однако тот факт, что F(x) – неубывающая функция, а Fn (x) имеет конечное число скачков, позволяет определить статистики Kn + и Kn - с помощью следующего простого алгоритма:

Шаг 1. Определяются выборочные значения ξ1 , ξ2 , … , ξn .

Шаг 2. Значения ξi располагаются в порядке возрастания так, чтобы ξ1 ≤ ξ2 ≤…≤ξn .

Шаг 3. Нужные статистики вычисляются по формулам

Kn + = max ( - F(xj ));

Kn - - = max (F(xj ) - ), при 1≤j≤n.


Заключение

В данной курсовой работе рассмотрены вопросы применения случайных чисел для прикладных задач математики и информатики, рассмотрены методы получения случайных чисел, начиная от самых ранних методов с использованием первых вычислительных машин по настоящее время.

После проведения обзора используемых в настоящее время датчиков случайных чисел, можно сделать вывод, что многие из них, несмотря на свою популярность, недостаточно хороши. Довольно часто какой-нибудь старый сравнительно неудовлетворительный метод передается от одного программиста к другому в слепую, и сегодняшний пользователь уже ничего не знает об его недостатках. Поэтому, при моделировании процессов и систем, в которых нужно учитывать случайные параметры, необходимо оценочно подходить к выбору подходящего датчика случайных чисел.

Один из акцентов курсовой работы был сделан на способы получения последовательностей как источника случайных чисел для ЭФМ. Рассмотрен вариант построения линейной конгруэнтные последовательности случайных чисел. Вообще, получение последовательностей псевдослучайных чисел сводится к задаче получения последовательностей, которые похожи на случайные, и определения, достаточно ли хороша генерируемая последовательность случайных чисел для выполняемой задачи. В работе рассмотрен вопрос использования критерия χ2 и КС-критерия для определения «случайности» чисел генерируемых числовых последовательностей, и показано, как могут соотноситься истинные и эмпирические функции распределения.

В качестве практической части приводится пример создания датчика случайных чисел, с последующей разработкой программы на языке Pascal.


Список литературы

1. Д. Кнут Искусство программирования для ЭВМ. т. 2, Получисленные алгоритмы. – М.: Издательство «Мир», 1977 – с. 5-98

2. Полляк Ю.Г. Вероятностное моделирование на электронных вычислительных машинах. - М.: Сов. Радио, 1971 — 386 с.

3. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и её инженерные приложения, М: Наука, 1988 — 301 с.

4. Советов Б.Я. Моделирование систем: Курсовое проектирование: Учеб. пособие для вузов по спец. АСУ.- М: Высш. шк., 1988. – 135с.: ил


Приложение

1. program g1;

const n=100;

var x0, a, c, m, i: byte; x: array[0..n] of integer;

begin

writeln ('vvedite x0>=0:');

readln (x0);

writeln ('vvedite a>=2:');

readln (a);

К-во Просмотров: 228
Бесплатно скачать Курсовая работа: Применение датчиков случайных чисел для имитации реальных условий