Курсовая работа: Применение нейронных сетей для формализации процессов управления Сети Хопфилда
Таким образом, можно с приемлемой точностью описать финансовое состояние российских банков, используя всего лишь два обобщенных финансовых индикатора, а именно - две координаты на двумерной карте Кохонена. Каждый банк по состоянию своего балансового отчета отображается конкретной ячейкой на карте. Ячейки с одинаковыми координатами содержат банки со сходным финансовым состоянием. Чем дальше на карте координаты банков, тем больше отличается друг от друга их финансовый портрет.
Рисунок 4.
Так, например, Ошибка! Источник ссылки не найден. иллюстрирует содержимое конкретной ячейки на карте Кохонена российских банков, содержащей 20x20 ячеек (т.е. 400 нейронов).
Расположение на карте банков с отозванной лицензией
Достоинства карты Кохонена начинают проявляться после нанесения на нее какой-либо графической информации. Показывает как выглядит карта Кохонена, на которой отмечены ячейки, содержащие банки с отозванными по результатам 2004 года лицензиями. Видно, что банки с отозванными лицензиями группируются в правом верхнем углу карты - "зоне риска". Мы увидим, что эта зона имеет и другие признаки неблагополучия.
Рисунок 5.
Следует отметить, что в отличие от анализа банкротств, описанного в первой части главы, здесь информация о банкротствах не участвовала в обучении сети. Она изображена на уже готовой карте, являясь лишь индикатором области параметров с повышенным риском банкротства. Эта особенность описываемой методики позволяет выявить область риска по относительно небольшому числу примеров (как в нашем случае).
7.4 Раскраски карты Кохонена
Различные раскраски топографической карты являются удобным средством для выявления взаимосвязей различных факторов. В принципе, любая финансовая характеристика порождает свою раскраску карты, как это иллюстрирует рисунок.
Рисунок 6.
Вместе подобные раскраски дают исчерпывающую и наглядную картину. Здесь имеется полная аналогия с географическими картами различных типов на одной и той же географической сетке, которые в совокупности дают полное представление о данной местности.
8. Модель нейронной сети для предсказания финансовой несостоятельности организации
Для построения нейронной сети необходимо разработать ее топологию, определить механизм обучения и процедуру тестирования. Кроме того, для обучения нужны входные данные — выборка компаний с достоверной финансовой отчетностью и рассчитанные на ее основе коэффициенты.
Наиболее привлекательным в данном случае представляется выбор трехслойного персептрона и алгоритма обратного распространения в качестве обучающего.
Х У
Этот тип нейронных сетей довольно хорошо исследован и описан в научной литературе.
Он была предложена в работе Rumelhart, МсСlelland (1986) и подробно обсуждается почти во всех учебниках по нейронным сетям. Каждый элемент сети строит взвешенную сумму своих входов с поправкой в виде слагаемого и затем пропускает эту величину активации через передаточную функцию, и таким образом получается выходное значение этого элемента. Элементы организованы в послойную топологию с прямой передачей сигнала. Такую сеть легко можно интерпретировать как модель вход-выход, в которой веса и пороговые значения (смещения) являются свободными параметрами модели.
Такая сеть может моделировать функцию практически любой степени сложности, причем число слоев и число элементов в каждом слое определяют сложность функции. Определение числа промежуточных слоев и числа элементов в них является важным вопросом при конструировании МLP. Количество входных и выходных элементов определяется условиями задачи.
Самый известный вариант алгоритма обучения нейронной сети - так называемый алгоритм обратного распространения (back propagation). В алгоритме обратного распространения вычисляется вектор градиента поверхности ошибок. Этот вектор указывает направление кратчайшего спуска по поверхности из данной точки, поэтому? если мы «немного» продвинемся по нему, ошибка уменьшится. Последовательность таких шагов (замедляющаяся по мере приближения к дну) в конце концов приведет к минимуму того или иного типа.
Определенную трудность здесь представляет вопрос о том, какую нужно брать длину шагов.
При большой длине шага сходимость будет более быстрой, но имеется опасность перепрыгнуть через решение или уйти в неправильном направлении. Классическим примером такого явления при обучении нейронной сети является ситуация, когда алгоритм очень медленно продвигается по узкому оврагу с крутыми склонами, прыгая с одной его стороны на другую. Напротив, при маленьком шаге, вероятно, будет схвачено верное направление, однако при этом потребуется очень много итераций. На практике величина шага берется пропорциональной крутизне склона (так что алгоритм замедляет ход вблизи минимума) с некоторой константой, которая называется скоростью обучения. Правильный выбор скорости обучения зависит от конкретной задачи и обычно осуществляется опытным путем; эта константа может также зависеть от времени, уменьшаясь по мере продвижения алгоритма.
Конфигурация разработанной сети следующая:
Общие параметры |
Параметры скрытого слоя |
Параметры выходного слоя |
Количество узлов во входном слое: 10 |
Коэффициент обучения: 0,25 |
Коэффициент обучения: 0,01 |
К-во Просмотров: 282
Бесплатно скачать Курсовая работа: Применение нейронных сетей для формализации процессов управления Сети Хопфилда
|