Курсовая работа: Применение ускоренных методов расчета расходов воды
б) Вертушкой, перемещаемой зигзагообразно от поверхности до дна потока и обратно в течение всего времени движения судна по створу.
Зигзагообразная интеграция в связи с техническими трудностями не получила распространения, поэтому ниже рассматривается только горизонтальная.
Рис.1. Принципиальная схема интеграционного измерения расхода воды с движущегося судна.
а – геометрические элементы схемы, б – сложение векторов скоростей
Горизонтальная интеграция скоростей обычно производится в поверхностном слое, так как коэффициенты перехода от поверхностей к средней скорости течения потока наиболее изучены. Принципиальная схема интеграционного измерения показана на рис.1, а один из вариантов приборного комплекса, разработанного в ГГИ. Непосредственно измеряются:
а) глубина h по створу (их регистрирует эхолот),
б) результирующая скорость up – векторная сумма поверхностоной скорости течения uп и скорости движения судна uc ,
в) угол α между осью вертушки и линией гидроствора. Если все эти элементы отнести к элементарному отсеку потока s шириной, равной расстоянию, которое судно проходит по створу за достаточно короткий интервал времени ∆t :
то можно получить фиктивный частичный расход в этом отсеке
Затем значения qф s умножаются на коэффициент К, обеспечивающий переход от фиктивного расхода к действительному. Этот коэффициент должен быть заранее известен для данного створа по результатам специальных наблюдений. Действительные значения qs в специальном вычислительном блоке последовательно суммируются (интегрируются) по мере движения судна вдоль гидроствора от одного берега к другому за время Т, что позволяет получить полный расход воды
(8)
При косоструйном течении растет uп и us становится более сложным и требует учета угла косоструйности αк , который заранее не известен. Однако если угол косоструйности не слишком велик (менее 200 ), можно использовать ту же формулу (8). Для компенсации возникающих при этом погрешностей интеграцию скоростей рекомендуется производить дважды (от одного берега к другому и обратно), а в качестве результата измерений принимать полусумму полученных значений.
Одно из главных метрологических преимуществ горизонтальной интеграции скоростей течения состоит в том, что она устраняет погрешность интерполяции средних скоростей на вертикалях, а при вертикальной дискретизации модели расхода воды эта погрешность является основной.
Выражение (8) относится к случаю, когда интеграция скоростей течения производится в поверхностном слое при незаглубленном измерителе скорости (z=0). Если же на реке наблюдается заметное волнение, появляется плывущий мусор или ледяные образования, приходится опускать измеритель ниже поверхности воды на глубину z. Измеряемый при этом расход Qz окажется не равным фиктивному расходу Qп . Соответствующий поправочный коэффициент определяется по зависимости, полученной И. Ф. Карасевым:
где β = (bл +bп )/B – непрозондированная часть ширины русла (см. рис.1); φ = hмакс /hcp – коэффициент полноты сечения; m = 24,0 м0,5 /с – эмпирический коэффициент Базена.
Переход к действительному расходу совершается по соотношению
Точность интеграционного измерения скорости течения существенно зависит от скорости перемещения судна по створу uc : при ее увеличении возникают погрешности измерения не только из-за малости времени интеграции Т, но и из-за уменьшения uп /uc . Чтобы не допустить чрезмерного возрастания рассматриваемой погрешности, скорость перемещения судна uc должна быть ограничена некоторым достаточно малым значением, при котором еще сохраняется устойчивость судна на курсе. Опыт показывает, что эта скорость близка к поверхностной скорости потока uп .
2.2 Измерение расходов воды с использованием физических эффектов
Для измерения скоростей течения (а значит, и расходов воды) могут быть использованы различные физические эффекты: Доплера, ультразвуковые и электромагнитная индукция.
Доплеровский метод измерения скоростей течения реализуется в двух вариантах: с использованием оптических квантовых генераторов и радиолокатора.
При лазерных измерениях источником информации о скорости потока служат спектральные характеристики света. Если поток, движущийся со скоростью v , просвечивается когерентным монохроматическим излучением с частотой ω0 и волновым вектором Ао , а рассеянное излучение при частоте ωi наблюдается в направлении волнового вектора As , то значение v устанавливается непосредственно по разности частот и векторов
v = (ωi — ω0 )/(As — A0 ).
Рассеяние света создается частицами взвесей, которые содержатся в потоке или вводятся в него. Лазерные установки пока нашли применение в трубопроводах и лабораторных лотках (рис. 2 а).
Радиолокационный вариант эффекта Доплера положен в основу измерителя поверхностных скоростей течения ГР-117, разработанного в ГГИ Г. А. Юфитом. Прибор состоит из блока радиоаппаратуры, рупорной антенны, блоков анализа характеристик радиоволн, прямых и отраженных от неоднородностей на поверхности потока — турбулентных возмущений и ветровых волн (рис. 2 б).
Для определения скорости течения в установке использована зависимость
где λ— длина радиоволны, составляющая 3,2 см.
Измерения производятся с гидрометрического мостика, люльки или с берега. Минимальное значение измеряемой скорости составляет 0,4 м/с, максимальное 15 м/с, индикация результата измерения - цифровая. Радиолокационный измеритель испытан в полевых условиях. В ближайшей перспективе первые партии прибора будут выпущены для производственного использования.
Ультразвуковой (акустический) метод заключается в посылке импульсов ультразвука по косому галсу в направлении течения и против него с регистрацией двух временных интервалов — соответственно Т1 и Т2 . Ультразвуковое зондирование может производиться в различных направлениях в плане и поперечном сечении потока, но для определенности принимается горизонтальное положение ультразвукового луча, а угол, который он должен составлять с динамической осью, равным 30—60°.
Рис.2. Варианты измерения скоростей потока с использованием эффекта Доплера.